"PyTorch/Compute-Vision/vscode:/vscode.git/clone" did not exist on "13a50bfe6969e2585231808583550672dd5aef1d"
ocr_rec.cpp 6.73 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {
WenmuZhou's avatar
WenmuZhou committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
                         std::vector<double> *times) {
  std::chrono::duration<float> preprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> inference_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> postprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

  int img_num = img_list.size();
  std::vector<float> width_list;
  for (int i = 0; i < img_num; i++) {
    width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
  }
  std::vector<int> indices = Utility::argsort(width_list);

  for (int beg_img_no = 0; beg_img_no < img_num;
       beg_img_no += this->rec_batch_num_) {
    auto preprocess_start = std::chrono::steady_clock::now();
    int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
    float max_wh_ratio = 0;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      int h = img_list[indices[ino]].rows;
      int w = img_list[indices[ino]].cols;
      float wh_ratio = w * 1.0 / h;
      max_wh_ratio = max(max_wh_ratio, wh_ratio);
MissPenguin's avatar
MissPenguin committed
45
    }
WenmuZhou's avatar
WenmuZhou committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    int batch_width = 0;
    std::vector<cv::Mat> norm_img_batch;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      cv::Mat srcimg;
      img_list[indices[ino]].copyTo(srcimg);
      cv::Mat resize_img;
      this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
                           this->use_tensorrt_);
      this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                              this->is_scale_);
      norm_img_batch.push_back(resize_img);
      batch_width = max(resize_img.cols, batch_width);
    }

    std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
    this->permute_op_.Run(norm_img_batch, input.data());
    auto preprocess_end = std::chrono::steady_clock::now();
    preprocess_diff += preprocess_end - preprocess_start;

    // Inference.
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
    auto inference_start = std::chrono::steady_clock::now();
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();

    std::vector<float> predict_batch;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
    auto predict_shape = output_t->shape();

    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                  std::multiplies<int>());
    predict_batch.resize(out_num);

    output_t->CopyToCpu(predict_batch.data());
    auto inference_end = std::chrono::steady_clock::now();
    inference_diff += inference_end - inference_start;

    // ctc decode
    auto postprocess_start = std::chrono::steady_clock::now();
    for (int m = 0; m < predict_shape[0]; m++) {
      std::vector<std::string> str_res;
      int argmax_idx;
      int last_index = 0;
      float score = 0.f;
      int count = 0;
      float max_value = 0.0f;

      for (int n = 0; n < predict_shape[1]; n++) {
        argmax_idx = int(Utility::argmax(
            &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
        max_value = float(*std::max_element(
            &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));

        if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
          score += max_value;
          count += 1;
          str_res.push_back(label_list_[argmax_idx]);
MissPenguin's avatar
MissPenguin committed
108
        }
WenmuZhou's avatar
WenmuZhou committed
109
110
111
112
113
114
115
116
117
        last_index = argmax_idx;
      }
      score /= count;
      if (isnan(score))
        continue;
      for (int i = 0; i < str_res.size(); i++) {
        std::cout << str_res[i];
      }
      std::cout << "\tscore: " << score << std::endl;
WenmuZhou's avatar
WenmuZhou committed
118
    }
WenmuZhou's avatar
WenmuZhou committed
119
120
121
122
123
124
    auto postprocess_end = std::chrono::steady_clock::now();
    postprocess_diff += postprocess_end - postprocess_start;
  }
  times->push_back(double(preprocess_diff.count() * 1000));
  times->push_back(double(inference_diff.count() * 1000));
  times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey committed
125
126
}

littletomatodonkey's avatar
littletomatodonkey committed
127
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
128
129
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
130
131
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
132

littletomatodonkey's avatar
littletomatodonkey committed
133
134
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
135
    if (this->use_tensorrt_) {
MissPenguin's avatar
MissPenguin committed
136
137
138
139
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
WenmuZhou's avatar
WenmuZhou committed
140
      if (this->precision_ == "int8") {
MissPenguin's avatar
MissPenguin committed
141
        precision = paddle_infer::Config::Precision::kInt8;
WenmuZhou's avatar
WenmuZhou committed
142
143
      }
      config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
MissPenguin's avatar
MissPenguin committed
144

LDOUBLEV's avatar
LDOUBLEV committed
145
      std::map<std::string, std::vector<int>> min_input_shape = {
WenmuZhou's avatar
WenmuZhou committed
146
          {"x", {1, 3, 32, 10}}, {"lstm_0.tmp_0", {10, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
147
      std::map<std::string, std::vector<int>> max_input_shape = {
WenmuZhou's avatar
WenmuZhou committed
148
          {"x", {1, 3, 32, 2000}}, {"lstm_0.tmp_0", {1000, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
149
      std::map<std::string, std::vector<int>> opt_input_shape = {
WenmuZhou's avatar
WenmuZhou committed
150
          {"x", {1, 3, 32, 320}}, {"lstm_0.tmp_0", {25, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
151
152
153

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
154
    }
littletomatodonkey's avatar
littletomatodonkey committed
155
156
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
157
158
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
159
160
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
161
    }
littletomatodonkey's avatar
littletomatodonkey committed
162
163
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
164

LDOUBLEV's avatar
LDOUBLEV committed
165
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
166
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
167
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
168
169
170
171

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
WenmuZhou's avatar
WenmuZhou committed
172
  //   config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
173

LDOUBLEV's avatar
LDOUBLEV committed
174
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
175
176
}

littletomatodonkey's avatar
littletomatodonkey committed
177
} // namespace PaddleOCR