"Deepspeed/HelloDeepSpeed/tests/__init__.py" did not exist on "0fc002dfc863089e33ea2dee33b0827046e4d174"
ocr_rec.cpp 6.57 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
                         cv::Mat &img) {
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
littletomatodonkey's avatar
littletomatodonkey committed
44
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
littletomatodonkey's avatar
littletomatodonkey committed
45
46
47
48
49
50
51
52

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    this->resize_op_.Run(crop_img, resize_img, wh_ratio);

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey committed
53
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey committed
54

littletomatodonkey's avatar
littletomatodonkey committed
55
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey committed
56
57
58
59

    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputTensor(input_names[0]);
    input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
littletomatodonkey's avatar
littletomatodonkey committed
60
    input_t->copy_from_cpu(input.data());
littletomatodonkey's avatar
littletomatodonkey committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    this->predictor_->ZeroCopyRun();

    std::vector<int64_t> rec_idx;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
    auto rec_idx_lod = output_t->lod();
    auto shape_out = output_t->shape();
    int out_num = std::accumulate(shape_out.begin(), shape_out.end(), 1,
                                  std::multiplies<int>());

    rec_idx.resize(out_num);
    output_t->copy_to_cpu(rec_idx.data());

    std::vector<int> pred_idx;
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1]); n++) {
      pred_idx.push_back(int(rec_idx[n]));
    }

    if (pred_idx.size() < 1e-3)
      continue;

    index += 1;
    std::cout << index << "\t";
    for (int n = 0; n < pred_idx.size(); n++) {
      std::cout << label_list_[pred_idx[n]];
    }

    std::vector<float> predict_batch;
    auto output_t_1 = this->predictor_->GetOutputTensor(output_names[1]);

    auto predict_lod = output_t_1->lod();
    auto predict_shape = output_t_1->shape();
    int out_num_1 = std::accumulate(predict_shape.begin(), predict_shape.end(),
                                    1, std::multiplies<int>());

    predict_batch.resize(out_num_1);
    output_t_1->copy_to_cpu(predict_batch.data());

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
littletomatodonkey's avatar
littletomatodonkey committed
107
108
      argmax_idx =
          int(Utility::argmax(&predict_batch[n * predict_shape[1]],
littletomatodonkey's avatar
littletomatodonkey committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
                              &predict_batch[(n + 1) * predict_shape[1]]));
      max_value =
          float(*std::max_element(&predict_batch[n * predict_shape[1]],
                                  &predict_batch[(n + 1) * predict_shape[1]]));
      if (blank - 1 - argmax_idx > 1e-5) {
        score += max_value;
        count += 1;
      }
    }
    score /= count;
    std::cout << "\tscore: " << score << std::endl;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
123
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
littletomatodonkey's avatar
littletomatodonkey committed
124
125
126
  AnalysisConfig config;
  config.SetModel(model_dir + "/model", model_dir + "/params");

littletomatodonkey's avatar
littletomatodonkey committed
127
128
129
130
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
rm mkl  
littletomatodonkey committed
131
    // config.EnableMKLDNN(); // not sugesteed to use for now
littletomatodonkey's avatar
littletomatodonkey committed
132
133
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
134

littletomatodonkey's avatar
littletomatodonkey committed
135
  // false for zero copy tensor
littletomatodonkey's avatar
littletomatodonkey committed
136
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
137
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
138
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
139
140
141
142

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
143
144
145
146

  this->predictor_ = CreatePaddlePredictor(config);
}

littletomatodonkey's avatar
littletomatodonkey committed
147
148
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

} // namespace PaddleOCR