ocr_rec.cpp 7.14 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {
MissPenguin's avatar
MissPenguin committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *times) {
    std::chrono::duration<float> preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
    std::chrono::duration<float> inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
    std::chrono::duration<float> postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

    int img_num = img_list.size();
    std::vector<float> width_list;
    for (int i = 0; i < img_num; i++) {
        width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
    }
    std::vector<int> indices = Utility::argsort(width_list);

    for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->rec_batch_num_) {
        auto preprocess_start = std::chrono::steady_clock::now();
        int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
        float max_wh_ratio = 0;
        for (int ino = beg_img_no; ino < end_img_no; ino ++) {
            int h = img_list[indices[ino]].rows;
            int w = img_list[indices[ino]].cols;
            float wh_ratio = w * 1.0 / h;
            max_wh_ratio = max(max_wh_ratio, wh_ratio);
        }
        std::vector<cv::Mat> norm_img_batch;
        for (int ino = beg_img_no; ino < end_img_no; ino ++) {
            cv::Mat srcimg;
            img_list[indices[ino]].copyTo(srcimg);
            cv::Mat resize_img;
            this->resize_op_.Run(srcimg, resize_img, max_wh_ratio, this->use_tensorrt_);
            this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_);
            norm_img_batch.push_back(resize_img);
        }
        
        int batch_width = int(ceilf(32 * max_wh_ratio)) - 1;
        std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
        this->permute_op_.Run(norm_img_batch, input.data());
        auto preprocess_end = std::chrono::steady_clock::now();
        preprocess_diff += preprocess_end - preprocess_start;

        // Inference.
        auto input_names = this->predictor_->GetInputNames();
        auto input_t = this->predictor_->GetInputHandle(input_names[0]);
        input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
        auto inference_start = std::chrono::steady_clock::now();
        input_t->CopyFromCpu(input.data());
        this->predictor_->Run();

        std::vector<float> predict_batch;
        auto output_names = this->predictor_->GetOutputNames();
        auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
        auto predict_shape = output_t->shape();

        int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
MissPenguin's avatar
MissPenguin committed
71
                                std::multiplies<int>());
MissPenguin's avatar
MissPenguin committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        predict_batch.resize(out_num);

        output_t->CopyToCpu(predict_batch.data());
        auto inference_end = std::chrono::steady_clock::now();
        inference_diff += inference_end - inference_start;
        
        // ctc decode
        auto postprocess_start = std::chrono::steady_clock::now();
        for (int m = 0; m < predict_shape[0]; m++) {
            std::vector<std::string> str_res;
            int argmax_idx;
            int last_index = 0;
            float score = 0.f;
            int count = 0;
            float max_value = 0.0f;

            for (int n = 0; n < predict_shape[1]; n++) {
                argmax_idx =
                    int(Utility::argmax(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
                                        &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
                max_value =
                    float(*std::max_element(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
                                            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));

                if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
                    score += max_value;
                    count += 1;
                    str_res.push_back(label_list_[argmax_idx]);
                }
                last_index = argmax_idx;
            }
            score /= count;
            if (isnan(score))
                continue;
            for (int i = 0; i < str_res.size(); i++) {
                std::cout << str_res[i];
            }
            std::cout << "\tscore: " << score << std::endl;
        }
        auto postprocess_end = std::chrono::steady_clock::now();
        postprocess_diff += postprocess_end - postprocess_start;
WenmuZhou's avatar
WenmuZhou committed
113
    }
MissPenguin's avatar
MissPenguin committed
114
115
116
    times->push_back(double(preprocess_diff.count() * 1000));
    times->push_back(double(inference_diff.count() * 1000));
    times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey committed
117
118
}

MissPenguin's avatar
MissPenguin committed
119
    
littletomatodonkey's avatar
littletomatodonkey committed
120
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
121
122
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
123
124
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
125

littletomatodonkey's avatar
littletomatodonkey committed
126
127
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
128
    if (this->use_tensorrt_) {
MissPenguin's avatar
MissPenguin committed
129
130
131
132
133
134
135
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
     if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } 
136
137
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
MissPenguin's avatar
MissPenguin committed
138
          precision,
139
          false, false);
MissPenguin's avatar
MissPenguin committed
140

LDOUBLEV's avatar
LDOUBLEV committed
141
      std::map<std::string, std::vector<int>> min_input_shape = {
MissPenguin's avatar
MissPenguin committed
142
143
          {"x", {1, 3, 32, 10}},
          {"lstm_0.tmp_0", {10, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
144
      std::map<std::string, std::vector<int>> max_input_shape = {
MissPenguin's avatar
MissPenguin committed
145
146
          {"x", {1, 3, 32, 2000}},
          {"lstm_0.tmp_0", {1000, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
147
      std::map<std::string, std::vector<int>> opt_input_shape = {
MissPenguin's avatar
MissPenguin committed
148
149
          {"x", {1, 3, 32, 320}},
          {"lstm_0.tmp_0", {25, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
150
151
152

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
153
    }
littletomatodonkey's avatar
littletomatodonkey committed
154
155
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
156
157
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
158
159
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
160
    }
littletomatodonkey's avatar
littletomatodonkey committed
161
162
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
163

LDOUBLEV's avatar
LDOUBLEV committed
164
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
165
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
166
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
167
168
169
170

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
MissPenguin's avatar
MissPenguin committed
171
//   config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
172

LDOUBLEV's avatar
LDOUBLEV committed
173
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
174
175
}

littletomatodonkey's avatar
littletomatodonkey committed
176
} // namespace PaddleOCR