program.py 19.5 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
24
import datetime
WenmuZhou's avatar
WenmuZhou committed
25
26
27
28
29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
dyning's avatar
dyning committed
33
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
34
from ppocr.utils import profiler
dyning's avatar
dyning committed
35
from ppocr.data import build_dataloader
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
50
51
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
LDOUBLEV's avatar
LDOUBLEV committed
52
        )
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
81
82
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
LDOUBLEV's avatar
LDOUBLEV committed
83
84


85
def merge_config(config, opts):
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
91
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
92
    for key, value in opts.items():
LDOUBLEV's avatar
LDOUBLEV committed
93
        if "." not in key:
94
95
            if isinstance(value, dict) and key in config:
                config[key].update(value)
LDOUBLEV's avatar
LDOUBLEV committed
96
            else:
97
                config[key] = value
LDOUBLEV's avatar
LDOUBLEV committed
98
99
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
100
            assert (
101
                sub_keys[0] in config
102
103
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
104
105
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
111
    return config
LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
126
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
127
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
133
def train(config,
dyning's avatar
dyning committed
134
135
136
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
137
138
139
140
141
142
143
144
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
stephon's avatar
stephon committed
145
146
          vdl_writer=None,
          scaler=None):
WenmuZhou's avatar
WenmuZhou committed
147
148
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
149
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
LDOUBLEV's avatar
LDOUBLEV committed
150
151
152
153
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
154
    profiler_options = config['profiler_options']
WenmuZhou's avatar
WenmuZhou committed
155

dyning's avatar
dyning committed
156
    global_step = 0
157
158
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
159
160
161
162
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
163
164
        if len(valid_dataloader) == 0:
            logger.info(
165
166
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
WenmuZhou's avatar
WenmuZhou committed
167
168
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
169
        logger.info(
170
171
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
LDOUBLEV's avatar
LDOUBLEV committed
172
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
173
174
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
175
176
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
177
178
179
180
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
181
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
182
183
    model.train()

tink2123's avatar
tink2123 committed
184
    use_srn = config['Architecture']['algorithm'] == "SRN"
tink2123's avatar
tink2123 committed
185
    extra_input = config['Architecture'][
LDOUBLEV's avatar
LDOUBLEV committed
186
        'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
187
    try:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
188
        model_type = config['Architecture']['model_type']
189
    except:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
190
        model_type = None
tink2123's avatar
tink2123 committed
191
    algorithm = config['Architecture']['algorithm']
tink2123's avatar
tink2123 committed
192

193
194
195
196
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
197
198
    train_reader_cost = 0.0
    train_batch_cost = 0.0
199
    reader_start = time.time()
200
    eta_meter = AverageMeter()
201
202
203

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
204

tink2123's avatar
tink2123 committed
205
    for epoch in range(start_epoch, epoch_num + 1):
206
207
208
209
210
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
WenmuZhou's avatar
WenmuZhou committed
211
        for idx, batch in enumerate(train_dataloader):
LDOUBLEV's avatar
LDOUBLEV committed
212
            profiler.add_profiler_step(profiler_options)
WenmuZhou's avatar
WenmuZhou committed
213
            train_reader_cost += time.time() - reader_start
Jane-Ding's avatar
Jane-Ding committed
214
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
215
216
217
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
218
            if use_srn:
tink2123's avatar
tink2123 committed
219
                model_average = True
stephon's avatar
stephon committed
220
221
222
223
224
225
226
227

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
tink2123's avatar
tink2123 committed
228
            else:
stephon's avatar
stephon committed
229
230
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
231
                elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
232
                    preds = model(batch)
stephon's avatar
stephon committed
233
234
                else:
                    preds = model(images)
235

WenmuZhou's avatar
WenmuZhou committed
236
237
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
stephon's avatar
stephon committed
238
239
240
241
242
243
244
245

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
WenmuZhou's avatar
WenmuZhou committed
246
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
247

248
249
250
251
252
253
254
255
256
257
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['table', 'kie']:
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

258
259
260
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
261
            global_step += 1
WenmuZhou's avatar
WenmuZhou committed
262
            total_samples += len(images)
WenmuZhou's avatar
WenmuZhou committed
263

dyning's avatar
dyning committed
264
265
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
266
267
268
269
270
271
272
273
274
275
276

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

277
278
279
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
280
                logs = train_stats.log()
LDOUBLEV's avatar
LDOUBLEV committed
281

282
283
284
285
286
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
LDOUBLEV's avatar
LDOUBLEV committed
287
                       'ips: {:.5f} samples/s, eta: {}'.format(
288
289
290
291
292
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
WenmuZhou's avatar
WenmuZhou committed
293
                logger.info(strs)
294

WenmuZhou's avatar
WenmuZhou committed
295
                total_samples = 0
296
297
                train_reader_cost = 0.0
                train_batch_cost = 0.0
WenmuZhou's avatar
WenmuZhou committed
298
299
            # eval
            if global_step > start_eval_step and \
300
301
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
302
303
304
305
306
307
308
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
309
310
311
312
313
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
314
                    model_type,
tink2123's avatar
tink2123 committed
315
                    extra_input=extra_input)
LDOUBLEV's avatar
LDOUBLEV committed
316
317
318
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
319
320
321

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
322
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
323
324
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
325
326
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
327
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
328
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
329
330
331
332
333
334
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
335
                        config,
WenmuZhou's avatar
WenmuZhou committed
336
337
338
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
339
340
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
341
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
342
343
344
345
346
347
348
349
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
350

WenmuZhou's avatar
WenmuZhou committed
351
            reader_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
352
353
354
355
356
357
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
358
                config,
WenmuZhou's avatar
WenmuZhou committed
359
360
361
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
362
363
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
364
365
366
367
368
369
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
370
                config,
WenmuZhou's avatar
WenmuZhou committed
371
372
373
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
374
375
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
376
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
377
378
379
380
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
381
382
383
    return


MissPenguin's avatar
refine  
MissPenguin committed
384
385
386
387
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
LDOUBLEV's avatar
LDOUBLEV committed
388
         model_type=None,
tink2123's avatar
tink2123 committed
389
         extra_input=False):
WenmuZhou's avatar
WenmuZhou committed
390
391
392
393
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
WenmuZhou committed
394
395
396
397
398
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
399
400
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
401
        for idx, batch in enumerate(valid_dataloader):
402
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
403
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
404
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
405
            start = time.time()
tink2123's avatar
tink2123 committed
406
            if model_type == 'table' or extra_input:
MissPenguin's avatar
refine  
MissPenguin committed
407
                preds = model(images, data=batch[1:])
408
            elif model_type in ["kie", 'vqa']:
LDOUBLEV's avatar
LDOUBLEV committed
409
                preds = model(batch)
xiaoting's avatar
xiaoting committed
410
            else:
LDOUBLEV's avatar
LDOUBLEV committed
411
                preds = model(images)
412
413
414
415
416
417
418

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
WenmuZhou's avatar
WenmuZhou committed
419
420
421
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
LDOUBLEV's avatar
LDOUBLEV committed
422
            if model_type in ['table', 'kie']:
423
424
425
426
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
MissPenguin's avatar
MissPenguin committed
427
            else:
428
429
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
LDOUBLEV's avatar
LDOUBLEV committed
430

WenmuZhou's avatar
fix bug  
WenmuZhou committed
431
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
432
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
433
434
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
435

WenmuZhou's avatar
fix bug  
WenmuZhou committed
436
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
437
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
438
439
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
440

tink2123's avatar
tink2123 committed
441

Bin Lu's avatar
Bin Lu committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


491
def preprocess(is_train=False):
licx's avatar
licx committed
492
    FLAGS = ArgsParser().parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
493
    profiler_options = FLAGS.profiler_options
licx's avatar
licx committed
494
    config = load_config(FLAGS.config)
495
    config = merge_config(config, FLAGS.opt)
LDOUBLEV's avatar
LDOUBLEV committed
496
    profile_dic = {"profiler_options": FLAGS.profiler_options}
497
    config = merge_config(config, profile_dic)
licx's avatar
licx committed
498

499
500
501
502
503
504
505
506
507
508
509
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
licx's avatar
licx committed
510
511
512
513
514

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
515
516
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
517
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
tink2123's avatar
tink2123 committed
518
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
519
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM'
WenmuZhou's avatar
WenmuZhou committed
520
    ]
licx's avatar
licx committed
521

WenmuZhou's avatar
WenmuZhou committed
522
523
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
524

dyning's avatar
dyning committed
525
    config['Global']['distributed'] = dist.get_world_size() != 1
526

littletomatodonkey's avatar
littletomatodonkey committed
527
    if config['Global']['use_visualdl'] and dist.get_rank() == 0:
dyning's avatar
dyning committed
528
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
529
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
530
531
532
533
534
535
536
537
538
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer