README.md 12.6 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
English | [简体中文](README_ch.md)

## Introduction
LDOUBLEV's avatar
LDOUBLEV committed
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
WenmuZhou's avatar
WenmuZhou committed
5

grasswolfs's avatar
grasswolfs committed
6
7
## Notice
PaddleOCR supports both dynamic graph and static graph programming paradigm
8
- Dynamic graph: dygraph branch (default), **supported by paddle 2.0.0 ([installation](./doc/doc_en/installation_en.md))**
grasswolfs's avatar
grasswolfs committed
9
10
- Static graph: develop branch

WenmuZhou's avatar
WenmuZhou committed
11
**Recent updates**
Daniel Yang's avatar
Daniel Yang committed
12
- 2021.1.21 update more than 25+ multilingual recognition models [models list](./doc/doc_en/models_list_en.md), including:English, Chinese, German, French, Japanese,Spanish,Portuguese Russia Arabic and so on.  Models for more languages will continue to be updated [Develop Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).
MissPenguin's avatar
MissPenguin committed
13
- 2020.12.15 update Data synthesis tool, i.e., [Style-Text](./StyleText/README.md),easy to synthesize a large number of images which are similar to the target scene image.
grasswolfs's avatar
grasswolfs committed
14
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
WenmuZhou's avatar
WenmuZhou committed
15
16
17
18
19
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
grasswolfs's avatar
grasswolfs committed
20
21
22
23
    - Ultra lightweight ppocr_mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
    - General ppocr_server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
    - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
    - Support multi-language recognition: Korean, Japanese, German, French
grasswolfs's avatar
grasswolfs committed
24
- Rich toolkits related to the OCR areas
grasswolfs's avatar
grasswolfs committed
25
26
    - Semi-automatic data annotation tool, i.e., PPOCRLabel: support fast and efficient data annotation
    - Data synthesis tool, i.e., Style-Text: easy to synthesize a large number of images which are similar to the target scene image
WenmuZhou's avatar
WenmuZhou committed
27
28
29
30
31
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
32

WenmuZhou's avatar
WenmuZhou committed
33
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
34
35
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
WenmuZhou's avatar
WenmuZhou committed
36
37
38
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
dyning's avatar
dyning committed
39

LDOUBLEV's avatar
LDOUBLEV committed
40
41
42
43
44
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
45
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.0/doc/joinus.PNG"  width = "200" height = "200" />
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
</div>


WenmuZhou's avatar
WenmuZhou committed
49
## Quick Experience
dyning's avatar
dyning committed
50

WenmuZhou's avatar
WenmuZhou committed
51
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
dyning's avatar
dyning committed
52

WenmuZhou's avatar
WenmuZhou committed
53
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
tink2123's avatar
tink2123 committed
54

WenmuZhou's avatar
WenmuZhou committed
55
 Also, you can scan the QR code below to install the App (**Android support only**)
LDOUBLEV's avatar
LDOUBLEV committed
56

grasswolfs's avatar
grasswolfs committed
57
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
58
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
grasswolfs's avatar
grasswolfs committed
59
</div>
dyning's avatar
dyning committed
60

WenmuZhou's avatar
WenmuZhou committed
61
62
63
64
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

LDOUBLEV's avatar
LDOUBLEV committed
65

tink2123's avatar
tink2123 committed
66
## PP-OCR 2.0 series model list(Update on Dec 15)
MissPenguin's avatar
MissPenguin committed
67
**Note** : Compared with [models 1.1](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md), which are trained with static graph programming paradigm, models 2.0 are the dynamic graph trained version and achieve close performance.
WenmuZhou's avatar
WenmuZhou committed
68
69
70

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
grasswolfs's avatar
grasswolfs committed
71
72
| Chinese and English ultra-lightweight OCR model (9.4M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143.4M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  
LDOUBLEV's avatar
LDOUBLEV committed
73

WenmuZhou's avatar
WenmuZhou committed
74

LDOUBLEV's avatar
LDOUBLEV committed
75
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
WenmuZhou's avatar
WenmuZhou committed
76

LDOUBLEV's avatar
LDOUBLEV committed
77
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
WenmuZhou's avatar
WenmuZhou committed
78
79
80
81
82

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
83
- Algorithm Introduction
WenmuZhou's avatar
WenmuZhou committed
84
85
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
86
87
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
WenmuZhou's avatar
WenmuZhou committed
88
89
90
91
92
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
LDOUBLEV's avatar
LDOUBLEV committed
93
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
WenmuZhou's avatar
WenmuZhou committed
94
95
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
MissPenguin's avatar
MissPenguin committed
96
    - [Serving](./deploy/pdserving/README.md)
LDOUBLEV's avatar
LDOUBLEV committed
97
98
99
    - [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
grasswolfs's avatar
grasswolfs committed
100
    - [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
dyning's avatar
dyning committed
101
    - [Data Synthesis Tool: Style-Text](./StyleText/README.md)
grasswolfs's avatar
grasswolfs committed
102
103
    - [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
108
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
LDOUBLEV's avatar
LDOUBLEV committed
109
- [New language requests](#language_requests)
WenmuZhou's avatar
WenmuZhou committed
110
111
112
113
114
115
116
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)


LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
120

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
dyning's avatar
dyning committed
121
122

<div align="center">
WenmuZhou's avatar
WenmuZhou committed
123
    <img src="./doc/ppocr_framework.png" width="800">
dyning's avatar
dyning committed
124
125
</div>

dyning's avatar
dyning committed
126
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection[2], detection frame correction and CRNN text recognition[7]. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner [8] and PACT quantization [9] is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).
dyning's avatar
dyning committed
127

tink2123's avatar
tink2123 committed
128

WenmuZhou's avatar
WenmuZhou committed
129
130
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
dyning's avatar
dyning committed
131
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
132
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
133
134
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
135
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
dyning's avatar
dyning committed
136
</div>
tink2123's avatar
tink2123 committed
137

WenmuZhou's avatar
WenmuZhou committed
138
- English OCR model
dyning's avatar
dyning committed
139
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
140
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
dyning's avatar
dyning committed
141
</div>
142

WenmuZhou's avatar
WenmuZhou committed
143
- Multilingual OCR model
dyning's avatar
dyning committed
144
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
145
    <img src="./doc/imgs_results/french_0.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
146
    <img src="./doc/imgs_results/korean.jpg" width="800">
dyning's avatar
dyning committed
147
</div>
tink2123's avatar
tink2123 committed
148

dyning's avatar
dyning committed
149

LDOUBLEV's avatar
LDOUBLEV committed
150
151
152
153
154
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

grasswolfs's avatar
grasswolfs committed
155
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
LDOUBLEV's avatar
LDOUBLEV committed
156
157
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

grasswolfs's avatar
grasswolfs committed
158
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
LDOUBLEV's avatar
LDOUBLEV committed
159
160
161
162
163
164
165
166
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

MissPenguin's avatar
MissPenguin committed
167

WenmuZhou's avatar
WenmuZhou committed
168
169
170
171
172
173
174
175
176
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
littletomatodonkey's avatar
littletomatodonkey committed
177
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitignore and discard set PYTHONPATH manually.
WenmuZhou's avatar
WenmuZhou committed
178
179
180
181
182
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
LDOUBLEV's avatar
LDOUBLEV committed
183
184
185
186
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。