"tests/unittest/test_tools/__init__.py" did not exist on "11e4e8cc59590859ed56d857fbbd37ca9dc130de"
README.md 14.9 KB
Newer Older
1
2
[English](README_en.md) | 简体中文

dyning's avatar
dyning committed
3
## 简介
tink2123's avatar
tink2123 committed
4
5
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

tink2123's avatar
tink2123 committed
6
**近期更新**
tink2123's avatar
tink2123 committed
7
- 2020.7.9 添加支持空格的识别模型,[识别效果](#支持空格的中文OCR效果展示)
8
- 2020.7.9 添加数据增强、学习率衰减策略,具体参考[配置文件](./doc/doc_ch/config.md)
9
- 2020.6.8 添加[数据集](./doc/doc_ch/datasets.md),并保持持续更新
tink2123's avatar
tink2123 committed
10
11
12
- 2020.6.5 支持 `attetnion` 模型导出 `inference_model`
- 2020.6.5 支持单独预测识别时,输出结果得分
- 2020.5.30 提供超轻量级中文OCR在线体验
13
- [more](./doc/doc_ch/update.md)
dyning's avatar
dyning committed
14

dyning's avatar
dyning committed
15
## 特性
dyning's avatar
dyning committed
16
17
18
- 超轻量级中文OCR,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
dyning's avatar
dyning committed
19
20
21
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE

dyning's avatar
dyning committed
22
23
### 支持的中文模型列表:

tink2123's avatar
tink2123 committed
24
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
tink2123's avatar
tink2123 committed
25
26
27
|-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
LDOUBLEV's avatar
LDOUBLEV committed
28

dyning's avatar
dyning committed
29
超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
LDOUBLEV's avatar
LDOUBLEV committed
30

dyning's avatar
dyning committed
31
**也可以按如下教程快速体验超轻量级中文OCR和通用中文OCR模型。**
LDOUBLEV's avatar
LDOUBLEV committed
32

dyning's avatar
dyning committed
33
## **超轻量级中文OCR以及通用中文OCR体验**
tink2123's avatar
tink2123 committed
34

LDOUBLEV's avatar
LDOUBLEV committed
35
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)[通用中文OCR效果展示](#通用中文OCR效果展示)
dyning's avatar
dyning committed
38

dyning's avatar
dyning committed
39
#### 1.环境配置
LDOUBLEV's avatar
LDOUBLEV committed
40

41
请先参考[快速安装](./doc/doc_ch/installation.md)配置PaddleOCR运行环境。
tink2123's avatar
tink2123 committed
42

dyning's avatar
dyning committed
43
#### 2.inference模型下载
LDOUBLEV's avatar
LDOUBLEV committed
44

tink2123's avatar
tink2123 committed
45
46
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*

tink2123's avatar
tink2123 committed
47

dyning's avatar
dyning committed
48
#### (1)超轻量级中文OCR模型下载
tink2123's avatar
tink2123 committed
49
```
LDOUBLEV's avatar
LDOUBLEV committed
50
mkdir inference && cd inference
dyning's avatar
dyning committed
51
# 下载超轻量级中文OCR模型的检测模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
52
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
dyning's avatar
dyning committed
53
# 下载超轻量级中文OCR模型的识别模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
54
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
55
56
# 下载支持空格的超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar && tar xf ch_rec_mv3_crnn_enhance_infer.tar
dyning's avatar
dyning committed
57
58
59
60
61
62
63
64
65
cd ..
```
#### (2)通用中文OCR模型下载
```
mkdir inference && cd inference
# 下载通用中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
# 下载通用中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
66
67
# 下载支持空格的通用中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar && tar xf ch_rec_r34_vd_crnn_enhance_infer.tar
dyning's avatar
dyning committed
68
cd ..
tink2123's avatar
tink2123 committed
69
70
```

dyning's avatar
dyning committed
71
72
#### 3.单张图像或者图像集合预测

dyning's avatar
dyning committed
73
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
dyning's avatar
dyning committed
74

75
```bash
tink2123's avatar
revert  
tink2123 committed
76

dyning's avatar
dyning committed
77
# 预测image_dir指定的单张图像
dyning's avatar
dyning committed
78
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
79
80

# 预测image_dir指定的图像集合
dyning's avatar
dyning committed
81
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
82

LDOUBLEV's avatar
LDOUBLEV committed
83
# 如果想使用CPU进行预测,需设置use_gpu参数为False
dyning's avatar
dyning committed
84
85
86
87
88
89
90
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
tink2123's avatar
tink2123 committed
91
```
LDOUBLEV's avatar
LDOUBLEV committed
92

93
94
95
96
97
98
99
带空格的通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:

```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
```

100
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/doc_ch/inference.md)
tink2123's avatar
tink2123 committed
101

dyning's avatar
dyning committed
102
## 文档教程
103
104
105
106
107
- [快速安装](./doc/doc_ch/installation.md)
- [文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
- [文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
- [基于预测引擎推理](./doc/doc_ch/inference.md)
- [数据集](./doc/doc_ch/datasets.md)
dyning's avatar
dyning committed
108
109
- [FAQ](#FAQ)
- [联系我们](#欢迎加入PaddleOCR技术交流群)
dyning's avatar
dyning committed
110
- [参考文献](#参考文献)
dyning's avatar
dyning committed
111

dyning's avatar
dyning committed
112
## 文本检测算法
tink2123's avatar
tink2123 committed
113
114

PaddleOCR开源的文本检测算法列表:
tink2123's avatar
tink2123 committed
115
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
116
117
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
118

dyning's avatar
dyning committed
119
在ICDAR2015文本检测公开数据集上,算法效果如下:
tink2123's avatar
tink2123 committed
120

LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
121
|模型|骨干网络|precision|recall|Hmean|下载链接|
122
|-|-|-|-|-|-|
dyning's avatar
dyning committed
123
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
124
125
126
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
127

MissPenguin's avatar
MissPenguin committed
128
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
129
130
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
131
132
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
tink2123's avatar
tink2123 committed
133

134
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
tink2123's avatar
tink2123 committed
135

136
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
tink2123's avatar
tink2123 committed
137

dyning's avatar
dyning committed
138
## 文本识别算法
tink2123's avatar
tink2123 committed
139
140

PaddleOCR开源的文本识别算法列表:
tink2123's avatar
tink2123 committed
141
142
143
144
145
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
146

dyning's avatar
dyning committed
147
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
tink2123's avatar
tink2123 committed
148

dyning's avatar
dyning committed
149
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
dyning's avatar
dyning committed
150
|-|-|-|-|-|
dyning's avatar
dyning committed
151
152
153
154
155
156
157
158
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
tink2123's avatar
tink2123 committed
159

MissPenguin's avatar
MissPenguin committed
160
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
161
162
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
163
164
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
tink2123's avatar
tink2123 committed
165

166
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
tink2123's avatar
tink2123 committed
167

dyning's avatar
dyning committed
168
169
## 端到端OCR算法
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
tink2123's avatar
tink2123 committed
170

dyning's avatar
dyning committed
171
<a name="超轻量级中文OCR效果展示"></a>
dyning's avatar
dyning committed
172
## 超轻量级中文OCR效果展示
LDOUBLEV's avatar
LDOUBLEV committed
173
174
175
176
177
178
179
180
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
tink2123's avatar
tink2123 committed
181

dyning's avatar
dyning committed
182
<a name="通用中文OCR效果展示"></a>
183
184
185
186
187
## 通用中文OCR效果展示
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

tink2123's avatar
tink2123 committed
188
189
190
191
192
193
194
195
196
<a name="支持空格的中文OCR效果展示"></a>
## 支持空格的中文OCR效果展示

### 轻量级模型
![](doc/imgs_results/img_11.jpg)

### 通用模型
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)

dyning's avatar
dyning committed
197
<a name="FAQ"></a>
dyning's avatar
dyning committed
198
## FAQ
tink2123's avatar
tink2123 committed
199
1. **转换attention识别模型时报错:KeyError: 'predict'**  
MissPenguin's avatar
MissPenguin committed
200
问题已解,请更新到最新代码。  
tink2123's avatar
tink2123 committed
201

tink2123's avatar
tink2123 committed
202
2. **关于推理速度**  
root's avatar
root committed
203
图片中的文字较多时,预测时间会增,可以使用--rec_batch_num设置更小预测batch num,默认值为30,可以改为10或其他数值。  
MissPenguin's avatar
MissPenguin committed
204

tink2123's avatar
tink2123 committed
205
3. **服务部署与移动端部署**  
root's avatar
root committed
206
预计6月中下旬会先后发布基于Serving的服务部署方案和基于Paddle Lite的移动端部署方案,欢迎持续关注。  
tink2123's avatar
tink2123 committed
207

tink2123's avatar
tink2123 committed
208
4. **自研算法发布时间**  
root's avatar
root committed
209
自研算法SAST、SRN、End2End-PSL都将在6-7月陆续发布,敬请期待。  
MissPenguin's avatar
MissPenguin committed
210

211
[more](./doc/doc_ch/FAQ.md)
dyning's avatar
dyning committed
212

dyning's avatar
dyning committed
213
<a name="欢迎加入PaddleOCR技术交流群"></a>
dyning's avatar
dyning committed
214
## 欢迎加入PaddleOCR技术交流群
MissPenguin's avatar
MissPenguin committed
215
216
扫描二维码或者加微信:paddlehelp,备注OCR,小助手拉你进群~  
<img src="./doc/paddlehelp.jpg"  width = "200" height = "200" />
MissPenguin's avatar
MissPenguin committed
217

dyning's avatar
dyning committed
218
<a name="参考文献"></a>
dyning's avatar
dyning committed
219
## 参考文献
tink2123's avatar
tink2123 committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```
dyning's avatar
dyning committed
273
274
275
276

## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

LDOUBLEV's avatar
LDOUBLEV committed
277
## 贡献代码
dyning's avatar
dyning committed
278
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
tink2123's avatar
tink2123 committed
279
280

- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档。
LDOUBLEV's avatar
LDOUBLEV committed
281
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题