README.md 5.73 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 简介
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

## 特性:
- 超轻量级模型
    - (检测模型4.1M + 识别模型4.5M = 8.6M)
- 支持竖排文字识别
    - (单模型同时支持横排和竖排文字识别)
- 支持长文本识别
- 支持中英文数字组合识别
- 提供训练代码
- 支持模型部署

LDOUBLEV's avatar
LDOUBLEV committed
15
16
![](./doc/imgs_draw/11.jpg)

dyning's avatar
dyning committed
17
## **快速运行**
tink2123's avatar
tink2123 committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

下载inference模型
```
# 创建inference模型保存目录
mkdir inference && cd inference && mkdir det && mkdir rec
# 下载检测inference模型/ 识别 inference 模型
wget -P ./inference https://paddleocr.bj.bcebos.com/inference.tar
```

实现文本检测、识别串联推理,预测$image_dir$指定的单张图像:
```
export PYTHONPATH=.
python tools/infer/predict_eval.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/"
```
在执行预测时,通过参数det_model_dir以及rec_model_dir设置存储inference 模型的路径。

实现文本检测、识别串联推理,预测$image_dir$指指定文件夹下的所有图像:
```
python tools/infer/predict_eval.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/"
```

dyning's avatar
dyning committed
39
40
41
42
43
44
45
## 文档教程
- [快速安装](./doc/installation.md)
- [文本识别模型训练/评估/预测](./doc/detection.md)
- [文本预测模型训练/评估/预测](./doc/recognition.md)
- [基于inference model预测](./doc/)


tink2123's avatar
tink2123 committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
## 文本检测算法:

PaddleOCR开源的文本检测算法列表:
- [x]  [EAST](https://arxiv.org/abs/1704.03155)
- [x]  [DB](https://arxiv.org/abs/1911.08947)
- [ ]  [SAST](https://arxiv.org/abs/1908.05498)


算法效果:
|模型|骨干网络|Hmean|
|-|-|-|
|EAST|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|85.85%|
|EAST|[MobileNetV3](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|79.08%|
|DB|[ResNet50_vd](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|83.30%|
|DB|[MobileNetV3](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|73.00%|

PaddleOCR文本检测算法的训练与使用请参考[文档](./doc/detection.md)

## 文本识别算法:

PaddleOCR开源的文本识别算法列表:
- [x]  [CRNN](https://arxiv.org/abs/1507.05717)
dyning's avatar
dyning committed
68
69
70
71
- [x]  [Rosetta](https://arxiv.org/abs/1910.05085)
- [x]  [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
- [x]  [RARE](https://arxiv.org/abs/1603.03915v1)
- [ ]  [SRN]((https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

算法效果如下表所示,精度指标是在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上的评测结果的平均值。

|模型|骨干网络|ACC|
|-|-|-|
|Rosetta|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|80.24%|
|Rosetta|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|78.16%|
|CRNN|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|82.20%|
|CRNN|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|79.37%|
|STAR-Net|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|83.93%|
|STAR-Net|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|81.56%|
|RARE|[Resnet34_vd](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|84.90%|
|RARE|[MobileNetV3](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|83.32%|

PaddleOCR文本识别算法的训练与使用请参考[文档](./doc/recognition.md)

## TODO
**端到端OCR算法**
PaddleOCR即将开源百度自研端对端OCR模型[End2End-PSL](https://arxiv.org/abs/1909.07808),敬请关注。
dyning's avatar
dyning committed
91
- [ ]  End2End-PSL (百度自研, comming soon)
tink2123's avatar
tink2123 committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148



# 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```