README.md 13 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
English | [简体中文](README_ch.md)

## Introduction
LDOUBLEV's avatar
LDOUBLEV committed
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
WenmuZhou's avatar
WenmuZhou committed
5
6

**Recent updates**
LDOUBLEV's avatar
LDOUBLEV committed
7
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README_en.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
WenmuZhou's avatar
WenmuZhou committed
8
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
LDOUBLEV's avatar
LDOUBLEV committed
9
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipeline](#PP-OCR-Pipeline)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list)
WenmuZhou's avatar
WenmuZhou committed
10
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list)
LDOUBLEV's avatar
LDOUBLEV committed
11
12
- 2020.9.17 update [English recognition model](./doc/doc_en/models_list_en.md#english-recognition-model) and [Multilingual recognition model](doc/doc_en/models_list_en.md#english-recognition-model), `English`, `Chinese`, `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated.
- 2020.8.24 Support the use of PaddleOCR through whl package installation,please refer  [PaddleOCR Package](./doc/doc_en/whl_en.md)
WenmuZhou's avatar
WenmuZhou committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
- 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519)
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
    - Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M
    - General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M
    - Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M
- Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
- Support multi-language recognition: Korean, Japanese, German, French
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
28

WenmuZhou's avatar
WenmuZhou committed
29
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
30
31
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
WenmuZhou's avatar
WenmuZhou committed
32
33
34
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
dyning's avatar
dyning committed
35

LDOUBLEV's avatar
LDOUBLEV committed
36
37
38
39
40
41
42
43
44
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
<img src="./doc/joinus.PNG"  width = "200" height = "200" />
</div>


WenmuZhou's avatar
WenmuZhou committed
45
## Quick Experience
dyning's avatar
dyning committed
46

WenmuZhou's avatar
WenmuZhou committed
47
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
dyning's avatar
dyning committed
48

WenmuZhou's avatar
WenmuZhou committed
49
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
tink2123's avatar
tink2123 committed
50

WenmuZhou's avatar
WenmuZhou committed
51
 Also, you can scan the QR code below to install the App (**Android support only**)
LDOUBLEV's avatar
LDOUBLEV committed
52

grasswolfs's avatar
grasswolfs committed
53
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
54
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
grasswolfs's avatar
grasswolfs committed
55
</div>
dyning's avatar
dyning committed
56

WenmuZhou's avatar
WenmuZhou committed
57
58
59
60
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

LDOUBLEV's avatar
LDOUBLEV committed
61

tink2123's avatar
tink2123 committed
62
## PP-OCR 2.0 series model list(Update on Dec 15)
WenmuZhou's avatar
WenmuZhou committed
63
64
65

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
LDOUBLEV's avatar
LDOUBLEV committed
66
67
68
| Chinese and English ultra-lightweight OCR model (8.1M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  

WenmuZhou's avatar
WenmuZhou committed
69

LDOUBLEV's avatar
LDOUBLEV committed
70
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
WenmuZhou's avatar
WenmuZhou committed
71

LDOUBLEV's avatar
LDOUBLEV committed
72
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
WenmuZhou's avatar
WenmuZhou committed
73
74
75
76
77

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
78
- Algorithm Introduction
WenmuZhou's avatar
WenmuZhou committed
79
80
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
81
82
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
WenmuZhou's avatar
WenmuZhou committed
83
84
85
86
87
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
LDOUBLEV's avatar
LDOUBLEV committed
88
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
WenmuZhou's avatar
WenmuZhou committed
89
90
91
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./deploy/hubserving/readme_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
98
99
    - [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
    - [Model Quantization](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/quantization/README_en.md)
    - [Model Compression](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/README_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
    - [Semi-automatic Annotation Tool](./PPOCRLabel/README_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
WenmuZhou's avatar
WenmuZhou committed
100
101
102
103
104
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
LDOUBLEV's avatar
LDOUBLEV committed
105
- [New language requests](#language_requests)
WenmuZhou's avatar
WenmuZhou committed
106
107
108
109
110
111
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)

LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
115
***Note: The dynamic graphs branch is still under development.
Currently, only dynamic graph training, python-end prediction, and C++ prediction are supported.
If you need mobile-end deployment cases or quantitative demo,
please use the static graph branch.***
WenmuZhou's avatar
WenmuZhou committed
116

LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
120

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
dyning's avatar
dyning committed
121
122

<div align="center">
WenmuZhou's avatar
WenmuZhou committed
123
    <img src="./doc/ppocr_framework.png" width="800">
dyning's avatar
dyning committed
124
125
</div>

WenmuZhou's avatar
WenmuZhou committed
126
127
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).

dyning's avatar
dyning committed
128

tink2123's avatar
tink2123 committed
129

WenmuZhou's avatar
WenmuZhou committed
130
131
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
dyning's avatar
dyning committed
132
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
133
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
134
135
    <img src="../imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="../imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
136
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
dyning's avatar
dyning committed
137
</div>
tink2123's avatar
tink2123 committed
138

WenmuZhou's avatar
WenmuZhou committed
139
- English OCR model
dyning's avatar
dyning committed
140
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
141
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
dyning's avatar
dyning committed
142
</div>
143

WenmuZhou's avatar
WenmuZhou committed
144
- Multilingual OCR model
dyning's avatar
dyning committed
145
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
146
    <img src="./doc/imgs_results/french_0.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
147
    <img src="./doc/imgs_results/korean.jpg" width="800">
dyning's avatar
dyning committed
148
</div>
tink2123's avatar
tink2123 committed
149

dyning's avatar
dyning committed
150

LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

1. In folder [ppocr/utils/dict](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/dict),
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

2. In folder [ppocr/utils/corpus](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/corpus),
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

MissPenguin's avatar
MissPenguin committed
168

WenmuZhou's avatar
WenmuZhou committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
187
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。