"megatron/vscode:/vscode.git/clone" did not exist on "fcc500d6e19d2c03f0e2e45f4c9c5b01c1577b11"
README.md 12.8 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
English | [简体中文](README_ch.md)

## Introduction
tink2123's avatar
tink2123 committed
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
WenmuZhou's avatar
WenmuZhou committed
5
6

**Recent updates**
tink2123's avatar
tink2123 committed
7
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README_en.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
WenmuZhou's avatar
WenmuZhou committed
8
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
tink2123's avatar
tink2123 committed
9
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipeline](#PP-OCR-Pipeline)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list)
WenmuZhou's avatar
WenmuZhou committed
10
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list)
tink2123's avatar
tink2123 committed
11
12
- 2020.9.17 update [English recognition model](./doc/doc_en/models_list_en.md#english-recognition-model) and [Multilingual recognition model](doc/doc_en/models_list_en.md#english-recognition-model), `English`, `Chinese`, `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated.
- 2020.8.24 Support the use of PaddleOCR through whl package installation,please refer  [PaddleOCR Package](./doc/doc_en/whl_en.md)
WenmuZhou's avatar
WenmuZhou committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
- 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519)
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
    - Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M
    - General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M
    - Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M
- Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
- Support multi-language recognition: Korean, Japanese, German, French
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
28

WenmuZhou's avatar
WenmuZhou committed
29
30
31
32
33
34
<div align="center">
    <img src="doc/imgs_results/1101.jpg" width="800">
    <img src="doc/imgs_results/1103.jpg" width="800">
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
dyning's avatar
dyning committed
35

tink2123's avatar
tink2123 committed
36
37
38
39
40
41
42
43
44
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
<img src="./doc/joinus.PNG"  width = "200" height = "200" />
</div>


WenmuZhou's avatar
WenmuZhou committed
45
## Quick Experience
dyning's avatar
dyning committed
46

WenmuZhou's avatar
WenmuZhou committed
47
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
dyning's avatar
dyning committed
48

WenmuZhou's avatar
WenmuZhou committed
49
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
tink2123's avatar
tink2123 committed
50

WenmuZhou's avatar
WenmuZhou committed
51
 Also, you can scan the QR code below to install the App (**Android support only**)
LDOUBLEV's avatar
LDOUBLEV committed
52

grasswolfs's avatar
grasswolfs committed
53
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
54
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
grasswolfs's avatar
grasswolfs committed
55
</div>
dyning's avatar
dyning committed
56

WenmuZhou's avatar
WenmuZhou committed
57
58
59
60
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

tink2123's avatar
tink2123 committed
61
## PP-OCR 2.0 series model list(Update on Sep 17)
WenmuZhou's avatar
WenmuZhou committed
62
63
64

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
tink2123's avatar
tink2123 committed
65
66
67
| Chinese and English ultra-lightweight OCR model (8.1M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  

WenmuZhou's avatar
WenmuZhou committed
68

tink2123's avatar
tink2123 committed
69
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
WenmuZhou's avatar
WenmuZhou committed
70

tink2123's avatar
tink2123 committed
71
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
WenmuZhou's avatar
WenmuZhou committed
72
73
74
75
76

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
tink2123's avatar
tink2123 committed
77
- Algorithm Introduction
WenmuZhou's avatar
WenmuZhou committed
78
79
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
tink2123's avatar
tink2123 committed
80
81
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
WenmuZhou's avatar
WenmuZhou committed
82
83
84
85
86
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
tink2123's avatar
tink2123 committed
87
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
WenmuZhou's avatar
WenmuZhou committed
88
89
90
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./deploy/hubserving/readme_en.md)
tink2123's avatar
tink2123 committed
91
92
93
94
95
96
97
98
    - [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
    - [Model Quantization](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/quantization/README_en.md)
    - [Model Compression](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/README_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
    - [Semi-automatic Annotation Tool](./PPOCRLabel/README_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
WenmuZhou's avatar
WenmuZhou committed
99
100
101
102
103
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
tink2123's avatar
tink2123 committed
104
- [New language requests](#language_requests)
WenmuZhou's avatar
WenmuZhou committed
105
106
107
108
109
110
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)

tink2123's avatar
tink2123 committed
111
112
113
114
***Note: The dynamic graphs branch is still under development.
Currently, only dynamic graph training, python-end prediction, and C++ prediction are supported.
If you need mobile-end deployment cases or quantitative demo,
please use the static graph branch.***
WenmuZhou's avatar
WenmuZhou committed
115

tink2123's avatar
tink2123 committed
116
117
118
119

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
dyning's avatar
dyning committed
120
121

<div align="center">
WenmuZhou's avatar
WenmuZhou committed
122
    <img src="./doc/ppocr_framework.png" width="800">
dyning's avatar
dyning committed
123
124
</div>

WenmuZhou's avatar
WenmuZhou committed
125
126
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).

dyning's avatar
dyning committed
127

tink2123's avatar
tink2123 committed
128

WenmuZhou's avatar
WenmuZhou committed
129
130
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
dyning's avatar
dyning committed
131
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
132
133
134
135
    <img src="./doc/imgs_results/1102.jpg" width="800">
    <img src="./doc/imgs_results/1104.jpg" width="800">
    <img src="./doc/imgs_results/1106.jpg" width="800">
    <img src="./doc/imgs_results/1105.jpg" width="800">
dyning's avatar
dyning committed
136
</div>
tink2123's avatar
tink2123 committed
137

WenmuZhou's avatar
WenmuZhou committed
138
- English OCR model
dyning's avatar
dyning committed
139
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
140
    <img src="./doc/imgs_results/img_12.jpg" width="800">
dyning's avatar
dyning committed
141
</div>
142

WenmuZhou's avatar
WenmuZhou committed
143
- Multilingual OCR model
dyning's avatar
dyning committed
144
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
145
146
    <img src="./doc/imgs_results/1110.jpg" width="800">
    <img src="./doc/imgs_results/1112.jpg" width="800">
dyning's avatar
dyning committed
147
</div>
tink2123's avatar
tink2123 committed
148

dyning's avatar
dyning committed
149

tink2123's avatar
tink2123 committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

1. In folder [ppocr/utils/dict](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/dict),
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

2. In folder [ppocr/utils/corpus](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/ppocr/utils/corpus),
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

MissPenguin's avatar
MissPenguin committed
167

WenmuZhou's avatar
WenmuZhou committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
tink2123's avatar
tink2123 committed
183
184
185
186
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。