README.md 12.9 KB
Newer Older
dyning's avatar
dyning committed
1
English | [简体中文](README_cn.md)
2

MissPenguin's avatar
MissPenguin committed
3
## Introduction
MissPenguin's avatar
MissPenguin committed
4
PaddleOCR aims to create rich, leading, and practical OCR tools that help users train better models and apply them into practice.
tink2123's avatar
tink2123 committed
5

dyning's avatar
dyning committed
6
**Live stream on coming day**:  July 21, 2020 at 8 pm BiliBili station live stream
dyning's avatar
dyning committed
7

dyning's avatar
dyning committed
8
**Recent updates**
dyning's avatar
dyning committed
9

dyning's avatar
dyning committed
10
- 2020.7.15, Add mobile App demo , support both iOS and  Android  ( based on easyedge and Paddle Lite)
dyning's avatar
dyning committed
11
- 2020.7.15, Improve the  deployment ability, add the C + +  inference , serving deployment. In addtion, the benchmarks of the ultra-lightweight OCR model are provided.
dyning's avatar
dyning committed
12
13
14
15
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.
- 2020.7.9 Add a new model to support recognize the  character "space".
- 2020.7.9 Add the data augument and learning rate decay strategies during training.
- [more](./doc/doc_en/update_en.md)
dyning's avatar
dyning committed
16

MissPenguin's avatar
MissPenguin committed
17
## Features
dyning's avatar
dyning committed
18
- Ultra-lightweight OCR model, total model size is only 8.6M
dyning's avatar
dyning committed
19
    - Single model supports Chinese/English numbers combination recognition, vertical text recognition, long text recognition
dyning's avatar
dyning committed
20
21
22
23
    - Detection model DB (4.1M) + recognition model CRNN (4.5M)
- Various text detection algorithms: EAST, DB
- Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
- Support Linux, Windows, MacOS and other systems.
dyning's avatar
dyning committed
24

dyning's avatar
dyning committed
25
## Visualization
tink2123's avatar
tink2123 committed
26

dyning's avatar
dyning committed
27
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
28

dyning's avatar
dyning committed
29
![](doc/imgs_results/img_10.jpg)
dyning's avatar
dyning committed
30

dyning's avatar
dyning committed
31
[More visualization](./doc/doc_en/visualization_en.md)
dyning's avatar
dyning committed
32

dyning's avatar
dyning committed
33
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
dyning's avatar
dyning committed
34

dyning's avatar
dyning committed
35
36
37
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)

 Also, you can scan the QR code blow to install the App (**Android support only**)
dyning's avatar
dyning committed
38
39
40
41
42

<div align="center">
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
</div>

dyning's avatar
dyning committed
43
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)
dyning's avatar
dyning committed
44

dyning's avatar
dyning committed
45
<a name="Supported-Chinese-model-list"></a>
dyning's avatar
dyning committed
46

dyning's avatar
dyning committed
47
### Supported Models:
dyning's avatar
dyning committed
48

dyning's avatar
dyning committed
49
|Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link|
dyning's avatar
dyning committed
50
|-|-|-|-|-|
dyning's avatar
dyning committed
51
52
|db_crnn_mobile|ultra-lightweight OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|db_crnn_server|General OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
dyning's avatar
dyning committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66


## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- Algorithm introduction
    - [Text Detection Algorithm](#TEXTDETECTIONALGORITHM)
    - [Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)
    - [END-TO-END OCR Algorithm](#ENDENDOCRALGORITHM)
- Model training/evaluation
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
    - [Tricks](./doc/doc_en/tricks_en.md)
dyning's avatar
dyning committed
67
- Deployment
dyning's avatar
dyning committed
68
69
70
71
72
73
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./doc/doc_en/serving_en.md)
    - [Mobile](./deploy/lite/readme_en.md)
    - Model Quantization and Compression (coming soon)
    - [Benchmark](./doc/doc_en/benchmark_en.md)
dyning's avatar
dyning committed
74
- Datasets
dyning's avatar
dyning committed
75
76
77
78
79
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
dyning's avatar
dyning committed
80
- [FAQ](#FAQ)
dyning's avatar
dyning committed
81
82
83
84
- Visualization
    - [Ultra-lightweight Chinese/English OCR Visualization](#UCOCRVIS)
    - [General Chinese/English OCR Visualization](#GeOCRVIS)
    - [Chinese/English OCR Visualization (Support Space Recognization )](#SpaceOCRVIS)
MissPenguin's avatar
MissPenguin committed
85
86
87
88
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)
dyning's avatar
dyning committed
89
90
91
92
93

<a name="TEXTDETECTIONALGORITHM"></a>
## Text Detection Algorithm

PaddleOCR open source text detection algorithms list:
tink2123's avatar
tink2123 committed
94
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
95
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
dyning's avatar
dyning committed
96
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
tink2123's avatar
tink2123 committed
97

dyning's avatar
dyning committed
98
On the ICDAR2015 dataset, the text detection result is as follows:
tink2123's avatar
tink2123 committed
99

dyning's avatar
dyning committed
100
|Model|Backbone|precision|recall|Hmean|Download link|
101
|-|-|-|-|-|-|
dyning's avatar
dyning committed
102
103
104
105
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
106

dyning's avatar
dyning committed
107
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for text detection task are as follows:
dyning's avatar
dyning committed
108
|Model|Backbone|Configuration file|Pre-trained model|
tink2123's avatar
tink2123 committed
109
|-|-|-|-|
dyning's avatar
dyning committed
110
111
|ultra-lightweight OCR model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|General OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
tink2123's avatar
tink2123 committed
112

dyning's avatar
dyning committed
113
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
tink2123's avatar
tink2123 committed
114

dyning's avatar
dyning committed
115
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
tink2123's avatar
tink2123 committed
116

dyning's avatar
dyning committed
117
118
<a name="TEXTRECOGNITIONALGORITHM"></a>
## Text Recognition Algorithm
tink2123's avatar
tink2123 committed
119

dyning's avatar
dyning committed
120
PaddleOCR open-source text recognition algorithms list:
tink2123's avatar
tink2123 committed
121
122
123
124
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
dyning's avatar
dyning committed
125
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
tink2123's avatar
tink2123 committed
126

dyning's avatar
dyning committed
127
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
tink2123's avatar
tink2123 committed
128

dyning's avatar
dyning committed
129
|Model|Backbone|Avg Accuracy|Module combination|Download link|
dyning's avatar
dyning committed
130
|-|-|-|-|-|
dyning's avatar
dyning committed
131
132
133
134
135
136
137
138
139
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|

dyning's avatar
dyning committed
140
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w  traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the model. The related configuration and pre-trained models are as follows:
dyning's avatar
dyning committed
141
|Model|Backbone|Configuration file|Pre-trained model|
tink2123's avatar
tink2123 committed
142
|-|-|-|-|
dyning's avatar
dyning committed
143
144
|ultra-lightweight OCR model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
|General OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
tink2123's avatar
tink2123 committed
145

dyning's avatar
dyning committed
146
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
tink2123's avatar
tink2123 committed
147

dyning's avatar
dyning committed
148
149
150
<a name="ENDENDOCRALGORITHM"></a>
## END-TO-END OCR Algorithm
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
tink2123's avatar
tink2123 committed
151

dyning's avatar
dyning committed
152
## Visualization
dyning's avatar
dyning committed
153

dyning's avatar
dyning committed
154
155
<a name="UCOCRVIS"></a>
### 1.Ultra-lightweight Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
tink2123's avatar
tink2123 committed
156

dyning's avatar
dyning committed
157
<div align="center">
dyning's avatar
dyning committed
158
    <img src="doc/imgs_results/1.jpg" width="800">
dyning's avatar
dyning committed
159
</div>
tink2123's avatar
tink2123 committed
160

dyning's avatar
dyning committed
161
162
<a name="GeOCRVIS"></a>
### 2. General Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
dyning's avatar
dyning committed
163
164
165
166

<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/11.jpg" width="800">
</div>
167

dyning's avatar
dyning committed
168
169
<a name="SpaceOCRVIS"></a>
### 3.Chinese/English OCR Visualization (Space_support) [more](./doc/doc_en/visualization_en.md)
tink2123's avatar
tink2123 committed
170

dyning's avatar
dyning committed
171
172
173
<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800">
</div>
tink2123's avatar
tink2123 committed
174

dyning's avatar
dyning committed
175
<a name="FAQ"></a>
dyning's avatar
dyning committed
176

dyning's avatar
dyning committed
177
## FAQ
dyning's avatar
dyning committed
178
179
180
181
182
183
184
185
186
1. Error when using attention-based recognition model: KeyError: 'predict'

    The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.

2. About inference speed

    When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.

3. Service deployment and mobile deployment
tink2123's avatar
tink2123 committed
187

dyning's avatar
dyning committed
188
    It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
MissPenguin's avatar
MissPenguin committed
189

dyning's avatar
dyning committed
190
4. Release time of self-developed algorithm
tink2123's avatar
tink2123 committed
191

dyning's avatar
dyning committed
192
    Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
MissPenguin's avatar
MissPenguin committed
193

dyning's avatar
dyning committed
194
[more](./doc/doc_en/FAQ_en.md)
dyning's avatar
dyning committed
195

dyning's avatar
dyning committed
196
<a name="Community"></a>
MissPenguin's avatar
MissPenguin committed
197
## Community
dyning's avatar
dyning committed
198
Scan  the QR code below with your wechat and completing the questionnaire, you can access to offical technical exchange group.
dyning's avatar
dyning committed
199

dyning's avatar
dyning committed
200
201
202
<div align="center">
<img src="./doc/joinus.jpg"  width = "200" height = "200" />
</div>
MissPenguin's avatar
MissPenguin committed
203

dyning's avatar
dyning committed
204
<a name="LICENSE"></a>
MissPenguin's avatar
MissPenguin committed
205
## License
dyning's avatar
dyning committed
206
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
dyning's avatar
dyning committed
207

dyning's avatar
dyning committed
208
<a name="CONTRIBUTION"></a>
MissPenguin's avatar
MissPenguin committed
209
## Contribution
dyning's avatar
dyning committed
210
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
tink2123's avatar
tink2123 committed
211

dyning's avatar
dyning committed
212
213
214
215
216
- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.