utility.py 22.5 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
import time
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27
logger = get_logger()
LDOUBLEV's avatar
LDOUBLEV committed
28
29


30
31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
LDOUBLEV's avatar
LDOUBLEV committed
32
33


WenmuZhou's avatar
WenmuZhou committed
34
def init_args():
LDOUBLEV's avatar
LDOUBLEV committed
35
    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
36
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
40
    parser.add_argument("--min_subgraph_size", type=int, default=3)
LDOUBLEV's avatar
LDOUBLEV committed
41
    parser.add_argument("--precision", type=str, default="fp32")
42
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
43

WenmuZhou's avatar
WenmuZhou committed
44
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
48
49
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
50

WenmuZhou's avatar
WenmuZhou committed
51
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
52
53
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
54
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
LDOUBLEV's avatar
LDOUBLEV committed
55
    parser.add_argument("--max_batch_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
56
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
57
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
58
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
59
60
61
62
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
63
    # SAST parmas
licx's avatar
licx committed
64
65
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
66
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
licx's avatar
licx committed
67

WenmuZhou's avatar
WenmuZhou committed
68
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
69
70
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
71
72
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
73
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
74
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
79
80
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
81
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
82
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
83

Jethong's avatar
Jethong committed
84
85
86
87
88
89
90
91
92
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
93
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
94
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
95
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
Jethong's avatar
Jethong committed
96
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
97

WenmuZhou's avatar
WenmuZhou committed
98
99
100
101
102
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
103
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
104
105
106
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
107
    parser.add_argument("--cpu_threads", type=int, default=10)
WenmuZhou's avatar
WenmuZhou committed
108
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
109
    parser.add_argument("--warmup", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
110

LDOUBLEV's avatar
LDOUBLEV committed
111
    # multi-process
littletomatodonkey's avatar
littletomatodonkey committed
112
    parser.add_argument("--use_mp", type=str2bool, default=False)
113
114
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
115

LDOUBLEV's avatar
LDOUBLEV committed
116
117
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
Double_V's avatar
Double_V committed
118

WenmuZhou's avatar
WenmuZhou committed
119
    parser.add_argument("--show_log", type=str2bool, default=True)
WenmuZhou's avatar
WenmuZhou committed
120
    return parser
WenmuZhou's avatar
WenmuZhou committed
121

122

123
def parse_args():
WenmuZhou's avatar
WenmuZhou committed
124
    parser = init_args()
LDOUBLEV's avatar
LDOUBLEV committed
125
126
127
    return parser.parse_args()


LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
class Times(object):
    def __init__(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += self.et - self.st
        else:
            self.time = self.et - self.st

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
    def __init__(self):
        super(Timer, self).__init__()
        self.total_time = Times()
        self.preprocess_time = Times()
        self.inference_time = Times()
        self.postprocess_time = Times()
        self.img_num = 0

    def info(self, average=False):
        logger.info("----------------------- Perf info -----------------------")
        logger.info("total_time: {}, img_num: {}".format(self.total_time.value(
        ), self.img_num))
        preprocess_time = round(self.preprocess_time.value() / self.img_num,
                                4) if average else self.preprocess_time.value()
        postprocess_time = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        inference_time = round(self.inference_time.value() / self.img_num,
                               4) if average else self.inference_time.value()

        average_latency = self.total_time.value() / self.img_num
        logger.info("average_latency(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, 1 / average_latency))
        logger.info(
            "preprocess_latency(ms): {:.2f}, inference_latency(ms): {:.2f}, postprocess_latency(ms): {:.2f}".
            format(preprocess_time * 1000, inference_time * 1000,
                   postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
        dic['preprocess_time'] = round(
            self.preprocess_time.value() / self.img_num,
            4) if average else self.preprocess_time.value()
        dic['postprocess_time'] = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        dic['inference_time'] = round(
            self.inference_time.value() / self.img_num,
            4) if average else self.inference_time.value()
        dic['img_num'] = self.img_num
        dic['total_time'] = round(self.total_time.value(), 4)
        return dic


WenmuZhou's avatar
WenmuZhou committed
198
199
200
201
202
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
203
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
204
        model_dir = args.rec_model_dir
WenmuZhou's avatar
WenmuZhou committed
205
206
    elif mode == 'table':
        model_dir = args.table_model_dir
Jethong's avatar
Jethong committed
207
208
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
209
210
211
212

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
213
214
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
215
216
217
218
219
220
221
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
222
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
223

LDOUBLEV's avatar
LDOUBLEV committed
224
225
226
227
228
229
230
231
232
233
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

WenmuZhou's avatar
WenmuZhou committed
234
235
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
236
237
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
LDOUBLEV's avatar
LDOUBLEV committed
238
239
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
240
241
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
LDOUBLEV's avatar
LDOUBLEV committed
242
        if mode == "det":
LDOUBLEV's avatar
LDOUBLEV committed
243
244
245
246
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
LDOUBLEV's avatar
LDOUBLEV committed
247
                "conv2d_59.tmp_0": [1, 96, 20, 20],
LDOUBLEV's avatar
LDOUBLEV committed
248
249
250
251
252
253
254
255
256
257
258
259
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
LDOUBLEV's avatar
LDOUBLEV committed
260
                "conv2d_59.tmp_0": [1, 96, 400, 400],
LDOUBLEV's avatar
LDOUBLEV committed
261
262
263
264
265
266
267
268
269
270
271
272
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
LDOUBLEV's avatar
LDOUBLEV committed
273
                "conv2d_59.tmp_0": [1, 96, 160, 160],
LDOUBLEV's avatar
LDOUBLEV committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
LDOUBLEV's avatar
LDOUBLEV committed
290
291
292
293
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
LDOUBLEV's avatar
LDOUBLEV committed
294
295
296
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

WenmuZhou's avatar
WenmuZhou committed
297
298
    else:
        config.disable_gpu()
LDOUBLEV's avatar
LDOUBLEV committed
299
300
301
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
WenmuZhou's avatar
WenmuZhou committed
302
            # default cpu threads as 10
LDOUBLEV's avatar
LDOUBLEV committed
303
            config.set_cpu_math_library_num_threads(10)
WenmuZhou's avatar
WenmuZhou committed
304
305
306
307
308
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

LDOUBLEV's avatar
LDOUBLEV committed
309
310
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
311
312
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
313
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
WenmuZhou's avatar
WenmuZhou committed
314
    if mode == 'table':
315
        config.delete_pass("fc_fuse_pass") # not supported for table    
WenmuZhou's avatar
WenmuZhou committed
316
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
317
    config.switch_ir_optim(True)
318

WenmuZhou's avatar
WenmuZhou committed
319
320
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
321
322
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
323
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
324
325
326
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
327
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
328
        output_tensors.append(output_tensor)
LDOUBLEV's avatar
LDOUBLEV committed
329
    return predictor, input_tensor, output_tensors, config
WenmuZhou's avatar
WenmuZhou committed
330
331


Jethong's avatar
Jethong committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
348
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
349
350
351
352
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
353
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
354
355


LDOUBLEV's avatar
LDOUBLEV committed
356
357
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
358
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
359
360
361
362
363
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
364
365
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
366
367


WenmuZhou's avatar
WenmuZhou committed
368
369
370
371
372
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
LDOUBLEV's avatar
LDOUBLEV committed
373
             font_path="./doc/fonts/simfang.ttf"):
374
375
376
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
377
        image(Image|array): RGB image
378
379
380
381
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
382
        font_path: the path of font which is used to draw text
383
384
385
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
386
387
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
388
389
390
391
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
392
            continue
WenmuZhou's avatar
WenmuZhou committed
393
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
394
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
395
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
396
        img = np.array(resize_img(image, input_size=600))
397
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
398
399
400
401
402
403
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
404
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
405
406
        return img
    return image
407
408


WenmuZhou's avatar
WenmuZhou committed
409
410
411
412
413
414
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
415
416
417
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
418
419

    import random
LDOUBLEV's avatar
LDOUBLEV committed
420

421
422
423
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
424
425
426
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
427
428
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
429
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
430
431
432
433
434
435
436
437
438
439
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
440
441
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
442
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
443
444
445
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
446
447
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
448
449
450
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
451
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
452
453
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
454
455
456
457
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
458
459
460
    return np.array(img_show)


461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
485
486
487
488
489
490
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
491
492
493
494
495
496
497
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
498
        font_path: the path of font which is used to draw text
499
500
501
502
503
504
505
506
507
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
508
509
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
510
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
511

512
513
514
515
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
516
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
517
518
519

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
520
    count, index = 1, 0
521
522
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
523
        if scores[idx] < threshold or math.isnan(scores[idx]):
524
525
526
527
528
529
530
531
532
533
534
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
535
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
536
537
538
539
540
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
541
            count += 1
542
543
544
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
545
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
546
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
547
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
548
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
549
550
551
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
552
        count += 1
553
554
555
556
557
558
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
559
560


dyning's avatar
dyning committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
def get_current_memory_mb(gpu_id=None):
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    if gpu_id is not None:
        GPUs = GPUtil.getGPUs()
        gpu_load = GPUs[gpu_id].load
        gpu_percent = gpu_load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)


LDOUBLEV's avatar
LDOUBLEV committed
605
if __name__ == '__main__':
LDOUBLEV's avatar
LDOUBLEV committed
606
    pass