predict_system.py 7.08 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
import os
import sys
LDOUBLEV's avatar
LDOUBLEV committed
16
import subprocess
WenmuZhou's avatar
WenmuZhou committed
17

18
__dir__ = os.path.dirname(os.path.abspath(__file__))
19
sys.path.append(__dir__)
20
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
21

22
23
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
import cv2
import copy
import numpy as np
import time
WenmuZhou's avatar
WenmuZhou committed
28
import logging
LDOUBLEV's avatar
LDOUBLEV committed
29
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
30
31
32
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
WenmuZhou's avatar
WenmuZhou committed
33
import tools.infer.predict_cls as predict_cls
WenmuZhou's avatar
WenmuZhou committed
34
35
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
36
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
WenmuZhou's avatar
WenmuZhou committed
37
38
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41

class TextSystem(object):
    def __init__(self, args):
WenmuZhou's avatar
WenmuZhou committed
42
43
44
        if not args.show_log:
            logger.setLevel(logging.INFO)

LDOUBLEV's avatar
LDOUBLEV committed
45
46
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
WenmuZhou's avatar
WenmuZhou committed
47
        self.use_angle_cls = args.use_angle_cls
WenmuZhou's avatar
WenmuZhou committed
48
        self.drop_score = args.drop_score
WenmuZhou's avatar
WenmuZhou committed
49
50
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
LDOUBLEV's avatar
LDOUBLEV committed
51

52
53
54
55
56
        self.args = args
        self.crop_image_res_index = 0

    def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
        os.makedirs(output_dir, exist_ok=True)
LDOUBLEV's avatar
LDOUBLEV committed
57
58
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
59
60
61
62
63
64
            cv2.imwrite(
                os.path.join(output_dir,
                             f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
                img_crop_list[bno])
            logger.debug(f"{bno}, {rec_res[bno]}")
        self.crop_image_res_index += bbox_num
LDOUBLEV's avatar
LDOUBLEV committed
65

66
    def __call__(self, img, cls=True):
LDOUBLEV's avatar
LDOUBLEV committed
67
68
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
LDOUBLEV's avatar
LDOUBLEV committed
69

WenmuZhou's avatar
WenmuZhou committed
70
        logger.debug("dt_boxes num : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
71
            len(dt_boxes), elapse))
LDOUBLEV's avatar
LDOUBLEV committed
72
73
74
        if dt_boxes is None:
            return None, None
        img_crop_list = []
75
76
77

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
78
79
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
WenmuZhou's avatar
WenmuZhou committed
80
            img_crop = get_rotate_crop_image(ori_im, tmp_box)
LDOUBLEV's avatar
LDOUBLEV committed
81
            img_crop_list.append(img_crop)
82
        if self.use_angle_cls and cls:
WenmuZhou's avatar
WenmuZhou committed
83
84
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
85
            logger.debug("cls num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
86
87
                len(img_crop_list), elapse))

LDOUBLEV's avatar
LDOUBLEV committed
88
        rec_res, elapse = self.text_recognizer(img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
89
        logger.debug("rec_res num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
90
            len(rec_res), elapse))
91
92
93
        if self.args.save_crop_res:
            self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
                                   rec_res)
WenmuZhou's avatar
WenmuZhou committed
94
95
96
97
98
99
100
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res
LDOUBLEV's avatar
LDOUBLEV committed
101
102


103
104
105
106
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
107
        dt_boxes(array):detected text boxes with shape [4, 2]
108
109
110
111
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
112
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
113
114
115
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
WenmuZhou's avatar
WenmuZhou committed
116
117
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
118
119
120
121
122
123
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


124
def main(args):
LDOUBLEV's avatar
LDOUBLEV committed
125
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
126
    image_file_list = image_file_list[args.process_id::args.total_process_num]
LDOUBLEV's avatar
LDOUBLEV committed
127
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
128
    is_visualize = True
WenmuZhou's avatar
WenmuZhou committed
129
    font_path = args.vis_font_path
WenmuZhou's avatar
WenmuZhou committed
130
    drop_score = args.drop_score
Double_V's avatar
Double_V committed
131

LDOUBLEV's avatar
LDOUBLEV committed
132
133
134
135
136
    # warm up 10 times
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(10):
            res = text_sys(img)
WenmuZhou's avatar
WenmuZhou committed
137

LDOUBLEV's avatar
LDOUBLEV committed
138
139
140
141
142
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
LDOUBLEV's avatar
LDOUBLEV committed
143

LDOUBLEV's avatar
LDOUBLEV committed
144
145
146
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
147
        if img is None:
148
            logger.debug("error in loading image:{}".format(image_file))
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
LDOUBLEV's avatar
LDOUBLEV committed
153
        total_time += elapse
LDOUBLEV's avatar
LDOUBLEV committed
154

155
        logger.debug(
LDOUBLEV's avatar
LDOUBLEV committed
156
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
WenmuZhou's avatar
WenmuZhou committed
157
        for text, score in rec_res:
158
            logger.debug("{}, {:.3f}".format(text, score))
LDOUBLEV's avatar
LDOUBLEV committed
159
160
161
162
163
164
165

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

WenmuZhou's avatar
WenmuZhou committed
166
167
168
169
170
171
172
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
173
174
            draw_img_save_dir = args.draw_img_save_dir
            os.makedirs(draw_img_save_dir, exist_ok=True)
LDOUBLEV's avatar
LDOUBLEV committed
175
176
            if flag:
                image_file = image_file[:-3] + "png"
LDOUBLEV's avatar
LDOUBLEV committed
177
            cv2.imwrite(
178
                os.path.join(draw_img_save_dir, os.path.basename(image_file)),
dyning's avatar
dyning committed
179
                draw_img[:, :, ::-1])
180
181
            logger.debug("The visualized image saved in {}".format(
                os.path.join(draw_img_save_dir, os.path.basename(image_file))))
182

LDOUBLEV's avatar
LDOUBLEV committed
183
    logger.info("The predict total time is {}".format(time.time() - _st))
LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
    if args.benchmark:
        text_sys.text_detector.autolog.report()
        text_sys.text_recognizer.autolog.report()
LDOUBLEV's avatar
LDOUBLEV committed
187

LDOUBLEV's avatar
LDOUBLEV committed
188

LDOUBLEV's avatar
LDOUBLEV committed
189
if __name__ == "__main__":
LDOUBLEV's avatar
LDOUBLEV committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    args = utility.parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)