README.md 11.9 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
English | [简体中文](README_ch.md)

## Introduction
LDOUBLEV's avatar
LDOUBLEV committed
4
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
WenmuZhou's avatar
WenmuZhou committed
5

grasswolfs's avatar
grasswolfs committed
6
7
8
9
10
## Notice
PaddleOCR supports both dynamic graph and static graph programming paradigm
- Dynamic graph: dygraph branch (default)
- Static graph: develop branch

WenmuZhou's avatar
WenmuZhou committed
11
**Recent updates**
MissPenguin's avatar
MissPenguin committed
12
- 2020.12.15 update Data synthesis tool, i.e., [Style-Text](./StyleText/README.md),easy to synthesize a large number of images which are similar to the target scene image.
grasswolfs's avatar
grasswolfs committed
13
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
WenmuZhou's avatar
WenmuZhou committed
14
15
16
17
18
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
grasswolfs's avatar
grasswolfs committed
19
20
21
22
    - Ultra lightweight ppocr_mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
    - General ppocr_server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
    - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
    - Support multi-language recognition: Korean, Japanese, German, French
grasswolfs's avatar
grasswolfs committed
23
- Rich toolkits related to the OCR areas
grasswolfs's avatar
grasswolfs committed
24
25
    - Semi-automatic data annotation tool, i.e., PPOCRLabel: support fast and efficient data annotation
    - Data synthesis tool, i.e., Style-Text: easy to synthesize a large number of images which are similar to the target scene image
WenmuZhou's avatar
WenmuZhou committed
26
27
28
29
30
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
31

WenmuZhou's avatar
WenmuZhou committed
32
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
33
34
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
WenmuZhou's avatar
WenmuZhou committed
35
36
37
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
dyning's avatar
dyning committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
46
47
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
<img src="./doc/joinus.PNG"  width = "200" height = "200" />
</div>


WenmuZhou's avatar
WenmuZhou committed
48
## Quick Experience
dyning's avatar
dyning committed
49

WenmuZhou's avatar
WenmuZhou committed
50
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
dyning's avatar
dyning committed
51

WenmuZhou's avatar
WenmuZhou committed
52
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
tink2123's avatar
tink2123 committed
53

WenmuZhou's avatar
WenmuZhou committed
54
 Also, you can scan the QR code below to install the App (**Android support only**)
LDOUBLEV's avatar
LDOUBLEV committed
55

grasswolfs's avatar
grasswolfs committed
56
<div align="center">
WenmuZhou's avatar
WenmuZhou committed
57
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
grasswolfs's avatar
grasswolfs committed
58
</div>
dyning's avatar
dyning committed
59

WenmuZhou's avatar
WenmuZhou committed
60
61
62
63
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

LDOUBLEV's avatar
LDOUBLEV committed
64

tink2123's avatar
tink2123 committed
65
## PP-OCR 2.0 series model list(Update on Dec 15)
WenmuZhou's avatar
WenmuZhou committed
66
67
68

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
grasswolfs's avatar
grasswolfs committed
69
70
| Chinese and English ultra-lightweight OCR model (9.4M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143.4M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  
LDOUBLEV's avatar
LDOUBLEV committed
71

WenmuZhou's avatar
WenmuZhou committed
72

LDOUBLEV's avatar
LDOUBLEV committed
73
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
WenmuZhou's avatar
WenmuZhou committed
74

LDOUBLEV's avatar
LDOUBLEV committed
75
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
WenmuZhou's avatar
WenmuZhou committed
76
77
78
79
80

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
81
- Algorithm Introduction
WenmuZhou's avatar
WenmuZhou committed
82
83
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
84
85
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
WenmuZhou's avatar
WenmuZhou committed
86
87
88
89
90
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
LDOUBLEV's avatar
LDOUBLEV committed
91
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
WenmuZhou's avatar
WenmuZhou committed
92
93
94
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./deploy/hubserving/readme_en.md)
LDOUBLEV's avatar
LDOUBLEV committed
95
96
97
    - [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
grasswolfs's avatar
grasswolfs committed
98
99
100
101
    - [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
    - [Data Synthesis Tool: Style_Edit](./StyleTextRec/README.md)
    - [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
WenmuZhou's avatar
WenmuZhou committed
102
103
104
105
106
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
LDOUBLEV's avatar
LDOUBLEV committed
107
- [New language requests](#language_requests)
WenmuZhou's avatar
WenmuZhou committed
108
109
110
111
112
113
114
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)


LDOUBLEV's avatar
LDOUBLEV committed
115
116
117
118

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
dyning's avatar
dyning committed
119
120

<div align="center">
WenmuZhou's avatar
WenmuZhou committed
121
    <img src="./doc/ppocr_framework.png" width="800">
dyning's avatar
dyning committed
122
123
</div>

WenmuZhou's avatar
WenmuZhou committed
124
125
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).

dyning's avatar
dyning committed
126

tink2123's avatar
tink2123 committed
127

WenmuZhou's avatar
WenmuZhou committed
128
129
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
dyning's avatar
dyning committed
130
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
131
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
132
133
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
134
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
dyning's avatar
dyning committed
135
</div>
tink2123's avatar
tink2123 committed
136

WenmuZhou's avatar
WenmuZhou committed
137
- English OCR model
dyning's avatar
dyning committed
138
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
139
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
dyning's avatar
dyning committed
140
</div>
141

WenmuZhou's avatar
WenmuZhou committed
142
- Multilingual OCR model
dyning's avatar
dyning committed
143
<div align="center">
LDOUBLEV's avatar
LDOUBLEV committed
144
    <img src="./doc/imgs_results/french_0.jpg" width="800">
LDOUBLEV's avatar
LDOUBLEV committed
145
    <img src="./doc/imgs_results/korean.jpg" width="800">
dyning's avatar
dyning committed
146
</div>
tink2123's avatar
tink2123 committed
147

dyning's avatar
dyning committed
148

LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
152
153
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

grasswolfs's avatar
grasswolfs committed
154
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
LDOUBLEV's avatar
LDOUBLEV committed
155
156
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

grasswolfs's avatar
grasswolfs committed
157
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
161
162
163
164
165
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

MissPenguin's avatar
MissPenguin committed
166

WenmuZhou's avatar
WenmuZhou committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
LDOUBLEV's avatar
LDOUBLEV committed
182
183
184
185
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。