README.md 12.9 KB
Newer Older
dyning's avatar
dyning committed
1
English | [简体中文](README_cn.md)
2

dyning's avatar
dyning committed
3
4
## INTRODUCTION
PaddleOCR aims to create a rich, leading, and practical OCR tools that help users train better models and apply them into practice.
tink2123's avatar
tink2123 committed
5

dyning's avatar
dyning committed
6
**Live stream on coming day**:  July 21, 2020 at 8 pm BiliBili station live stream
dyning's avatar
dyning committed
7

dyning's avatar
dyning committed
8
**Recent updates**
dyning's avatar
dyning committed
9

dyning's avatar
dyning committed
10
11
12
13
14
15
- 2020.7.15, Add mobile App demo , support both iOS and  Android  ( based on easyedge and Paddle Lite)
- 2020.7.15, Improve the  deployment ability, add the C + +  inference , serving deployment. In addtion, the benchmarks of the ultra-lightweight Chinese OCR model are provided.
- 2020.7.15, Add several related datasets, data annotation and synthesis tools.
- 2020.7.9 Add a new model to support recognize the  character "space".
- 2020.7.9 Add the data augument and learning rate decay strategies during training.
- [more](./doc/doc_en/update_en.md)
dyning's avatar
dyning committed
16

dyning's avatar
dyning committed
17
18
19
20
21
22
23
## FEATURES
- Ultra-lightweight Chinese OCR model, total model size is only 8.6M
    - Single model supports Chinese and English numbers combination recognition, vertical text recognition, long text recognition
    - Detection model DB (4.1M) + recognition model CRNN (4.5M)
- Various text detection algorithms: EAST, DB
- Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
- Support Linux, Windows, MacOS and other systems.
dyning's avatar
dyning committed
24

dyning's avatar
dyning committed
25
## Visualization
tink2123's avatar
tink2123 committed
26

dyning's avatar
dyning committed
27
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
28

dyning's avatar
dyning committed
29
[More visualization](./doc/doc_en/visualization_en.md)
dyning's avatar
dyning committed
30

dyning's avatar
dyning committed
31
You can also quickly experience the ultra-lightweight Chinese OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
dyning's avatar
dyning committed
32

dyning's avatar
dyning committed
33
34
35
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)

 Also, you can scan the QR code blow to install the App (**Android support only**)
dyning's avatar
dyning committed
36
37
38
39
40

<div align="center">
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
</div>

dyning's avatar
dyning committed
41
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)
dyning's avatar
dyning committed
42

dyning's avatar
dyning committed
43
<a name="Supported-Chinese-model-list"></a>
dyning's avatar
dyning committed
44

dyning's avatar
dyning committed
45
### Supported Chinese Models:
dyning's avatar
dyning committed
46

dyning's avatar
dyning committed
47
|Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link|
dyning's avatar
dyning committed
48
|-|-|-|-|-|
dyning's avatar
dyning committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|chinese_db_crnn_mobile|ultra-lightweight Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|General Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)


## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- Algorithm introduction
    - [Text Detection Algorithm](#TEXTDETECTIONALGORITHM)
    - [Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)
    - [END-TO-END OCR Algorithm](#ENDENDOCRALGORITHM)
- Model training/evaluation
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
    - [Tricks](./doc/doc_en/tricks_en.md)
dyning's avatar
dyning committed
65
- 预测部署
dyning's avatar
dyning committed
66
67
68
69
70
71
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./doc/doc_en/serving_en.md)
    - [Mobile](./deploy/lite/readme_en.md)
    - Model Quantization and Compression (coming soon)
    - [Benchmark](./doc/doc_en/benchmark_en.md)
dyning's avatar
dyning committed
72
- 数据集
dyning's avatar
dyning committed
73
74
75
76
77
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
dyning's avatar
dyning committed
78
- [FAQ](#FAQ)
dyning's avatar
dyning committed
79
80
81
82
83
84
85
86
87
88
89
90
91
- Visualization
    - [Ultra-lightweight Chinese/English OCR Visualization](#UCOCRVIS)
    - [General Chinese/English OCR Visualization](#GeOCRVIS)
    - [Chinese/English OCR Visualization (Support Space Recognization )](#SpaceOCRVIS)
- [COMMUNITY](#Community)
- [REFERENCES](./doc/doc_en/reference_en.md)
- [LICENSE](#LICENSE)
- [CONTRIBUTION](#CONTRIBUTION)

<a name="TEXTDETECTIONALGORITHM"></a>
## Text Detection Algorithm

PaddleOCR open source text detection algorithms list:
tink2123's avatar
tink2123 committed
92
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
93
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
dyning's avatar
dyning committed
94
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
tink2123's avatar
tink2123 committed
95

dyning's avatar
dyning committed
96
On the ICDAR2015 dataset, the text detection result is as follows:
tink2123's avatar
tink2123 committed
97

dyning's avatar
dyning committed
98
|Model|Backbone|precision|recall|Hmean|Download link|
99
|-|-|-|-|-|-|
dyning's avatar
dyning committed
100
101
102
103
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
104

dyning's avatar
dyning committed
105
106
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for Chinese detection task are as follows:
|Model|Backbone|Configuration file|Pre-trained model|
tink2123's avatar
tink2123 committed
107
|-|-|-|-|
dyning's avatar
dyning committed
108
109
|ultra-lightweight Chinese model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|General Chinese OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
tink2123's avatar
tink2123 committed
110

dyning's avatar
dyning committed
111
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
tink2123's avatar
tink2123 committed
112

dyning's avatar
dyning committed
113
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
tink2123's avatar
tink2123 committed
114

dyning's avatar
dyning committed
115
116
<a name="TEXTRECOGNITIONALGORITHM"></a>
## Text Recognition Algorithm
tink2123's avatar
tink2123 committed
117

dyning's avatar
dyning committed
118
PaddleOCR open-source text recognition algorithms list:
tink2123's avatar
tink2123 committed
119
120
121
122
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
dyning's avatar
dyning committed
123
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
tink2123's avatar
tink2123 committed
124

dyning's avatar
dyning committed
125
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
tink2123's avatar
tink2123 committed
126

dyning's avatar
dyning committed
127
|Model|Backbone|Avg Accuracy|Module combination|Download link|
dyning's avatar
dyning committed
128
|-|-|-|-|-|
dyning's avatar
dyning committed
129
130
131
132
133
134
135
136
137
138
139
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|

We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w  traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows:
|Model|Backbone|Configuration file|Pre-trained model|
tink2123's avatar
tink2123 committed
140
|-|-|-|-|
dyning's avatar
dyning committed
141
142
|ultra-lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
|General Chinese OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
tink2123's avatar
tink2123 committed
143

dyning's avatar
dyning committed
144
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
tink2123's avatar
tink2123 committed
145

dyning's avatar
dyning committed
146
147
148
<a name="ENDENDOCRALGORITHM"></a>
## END-TO-END OCR Algorithm
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
tink2123's avatar
tink2123 committed
149

dyning's avatar
dyning committed
150
## Visualization
dyning's avatar
dyning committed
151

dyning's avatar
dyning committed
152
153
<a name="UCOCRVIS"></a>
### 1.Ultra-lightweight Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
tink2123's avatar
tink2123 committed
154

dyning's avatar
dyning committed
155
<div align="center">
dyning's avatar
dyning committed
156
    <img src="doc/imgs_results/1.jpg" width="800">
dyning's avatar
dyning committed
157
</div>
tink2123's avatar
tink2123 committed
158

dyning's avatar
dyning committed
159
160
<a name="GeOCRVIS"></a>
### 2. General Chinese/English OCR Visualization [more](./doc/doc_en/visualization_en.md)
dyning's avatar
dyning committed
161
162
163
164

<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/11.jpg" width="800">
</div>
165

dyning's avatar
dyning committed
166
167
<a name="SpaceOCRVIS"></a>
### 3.Chinese/English OCR Visualization (Space_support) [more](./doc/doc_en/visualization_en.md)
tink2123's avatar
tink2123 committed
168

dyning's avatar
dyning committed
169
170
171
<div align="center">
    <img src="doc/imgs_results/chinese_db_crnn_server/en_paper.jpg" width="800">
</div>
tink2123's avatar
tink2123 committed
172

dyning's avatar
dyning committed
173
<a name="FAQ"></a>
dyning's avatar
dyning committed
174

dyning's avatar
dyning committed
175
## FAQ
dyning's avatar
dyning committed
176
177
178
179
180
181
182
183
184
1. Error when using attention-based recognition model: KeyError: 'predict'

    The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.

2. About inference speed

    When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.

3. Service deployment and mobile deployment
tink2123's avatar
tink2123 committed
185

dyning's avatar
dyning committed
186
    It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
MissPenguin's avatar
MissPenguin committed
187

dyning's avatar
dyning committed
188
4. Release time of self-developed algorithm
tink2123's avatar
tink2123 committed
189

dyning's avatar
dyning committed
190
    Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
MissPenguin's avatar
MissPenguin committed
191

dyning's avatar
dyning committed
192
[more](./doc/doc_en/FAQ_en.md)
dyning's avatar
dyning committed
193

dyning's avatar
dyning committed
194
195
196
<a name="Community"></a>
## COMMUNITY
Scan  the QR code below with your wechat and completing the questionnaire, you can access to offical technical exchange group.
dyning's avatar
dyning committed
197

dyning's avatar
dyning committed
198
199
200
<div align="center">
<img src="./doc/joinus.jpg"  width = "200" height = "200" />
</div>
MissPenguin's avatar
MissPenguin committed
201

dyning's avatar
dyning committed
202
203
204
<a name="LICENSE"></a>
## LICENSE
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
dyning's avatar
dyning committed
205

dyning's avatar
dyning committed
206
207
208
<a name="CONTRIBUTION"></a>
## CONTRIBUTION
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
tink2123's avatar
tink2123 committed
209

dyning's avatar
dyning committed
210
211
212
213
214
- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.