README.md 7.95 KB
Newer Older
tink2123's avatar
tink2123 committed
1

dyning's avatar
dyning committed
2
## 简介
tink2123's avatar
tink2123 committed
3
4
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

dyning's avatar
dyning committed
5
## 特性
dyning's avatar
dyning committed
6
7
8
- 超轻量级中文OCR,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
dyning's avatar
dyning committed
9
10
11
12
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE

## **超轻量级中文OCR体验**
tink2123's avatar
tink2123 committed
13

LDOUBLEV's avatar
LDOUBLEV committed
14
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
15

dyning's avatar
dyning committed
16
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)
dyning's avatar
dyning committed
17

dyning's avatar
dyning committed
18
#### 1.环境配置
LDOUBLEV's avatar
LDOUBLEV committed
19

dyning's avatar
dyning committed
20
请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
tink2123's avatar
tink2123 committed
21

dyning's avatar
dyning committed
22
#### 2.模型下载
LDOUBLEV's avatar
LDOUBLEV committed
23

tink2123's avatar
tink2123 committed
24
```
dyning's avatar
dyning committed
25
# 下载inference模型文件包
dyning's avatar
dyning committed
26
wget https://paddleocr.bj.bcebos.com/inference.tar
dyning's avatar
dyning committed
27
# inference模型文件包解压
dyning's avatar
dyning committed
28
tar -xf inference.tar
tink2123's avatar
tink2123 committed
29
30
```

dyning's avatar
dyning committed
31
32
#### 3.单张图像或者图像集合预测

dyning's avatar
dyning committed
33
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
dyning's avatar
dyning committed
34

tink2123's avatar
tink2123 committed
35
```
dyning's avatar
dyning committed
36
# 设置PYTHONPATH环境变量
tink2123's avatar
tink2123 committed
37
38
export PYTHONPATH=.

dyning's avatar
dyning committed
39
# 预测image_dir指定的单张图像
dyning's avatar
dyning committed
40
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/"
dyning's avatar
dyning committed
41
42

# 预测image_dir指定的图像集合
dyning's avatar
dyning committed
43
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/"
dyning's avatar
dyning committed
44
45
46

# 如果想使用CPU进行预测,执行命令如下
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/" --use_gpu=False
tink2123's avatar
tink2123 committed
47
```
dyning's avatar
dyning committed
48
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/inference.md)
tink2123's avatar
tink2123 committed
49

LDOUBLEV's avatar
LDOUBLEV committed
50

dyning's avatar
dyning committed
51
52
## 文档教程
- [快速安装](./doc/installation.md)
dyning's avatar
dyning committed
53
54
55
- [文本检测模型训练/评估/预测](./doc/detection.md)(持续更新中)
- [文本识别模型训练/评估/预测](./doc/recognition.md)(持续更新中)
- [基于预测引擎推理](./doc/inference.md)(持续更新中)
dyning's avatar
dyning committed
56

dyning's avatar
dyning committed
57
## 文本检测算法
tink2123's avatar
tink2123 committed
58
59

PaddleOCR开源的文本检测算法列表:
tink2123's avatar
tink2123 committed
60
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
61
62
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
63

dyning's avatar
dyning committed
64
在ICDAR2015文本检测公开数据集上,算法效果如下:
tink2123's avatar
tink2123 committed
65

LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
66
|模型|骨干网络|precision|recall|Hmean|下载链接|
tink2123's avatar
tink2123 committed
67
|-|-|-|-|
LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
68
69
70
71
|EAST|ResNet50_vd|88.18%|85.51|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
72

LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
73
* 注: 上述模型的训练和评估,设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
tink2123's avatar
tink2123 committed
74

dyning's avatar
dyning committed
75
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)
tink2123's avatar
tink2123 committed
76

dyning's avatar
dyning committed
77
## 文本识别算法
tink2123's avatar
tink2123 committed
78
79

PaddleOCR开源的文本识别算法列表:
tink2123's avatar
tink2123 committed
80
81
82
83
84
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
85

dyning's avatar
dyning committed
86
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
tink2123's avatar
tink2123 committed
87

dyning's avatar
dyning committed
88
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
dyning's avatar
dyning committed
89
|-|-|-|-|-|
dyning's avatar
dyning committed
90
91
92
93
94
95
96
97
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
tink2123's avatar
tink2123 committed
98

dyning's avatar
dyning committed
99
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)
tink2123's avatar
tink2123 committed
100

dyning's avatar
dyning committed
101
102
## 端到端OCR算法
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
tink2123's avatar
tink2123 committed
103

dyning's avatar
dyning committed
104
<a name="效果展示"></a>
LDOUBLEV's avatar
LDOUBLEV committed
105
## 效果展示
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
111
112
113
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
tink2123's avatar
tink2123 committed
114
115


dyning's avatar
dyning committed
116
## 参考文献
tink2123's avatar
tink2123 committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```
dyning's avatar
dyning committed
170
171
172
173
174
175
176
177

## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

## 版本更新

## 如何贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。