README.md 14.8 KB
Newer Older
1
2
[English](README_en.md) | 简体中文

dyning's avatar
dyning committed
3
## 简介
tink2123's avatar
tink2123 committed
4
5
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

tink2123's avatar
tink2123 committed
6
**近期更新**
tink2123's avatar
tink2123 committed
7
- 2020.7.9 添加支持空格的识别模型,[识别效果](#支持空格的中文OCR效果展示)
8
- 2020.7.9 添加数据增强、学习率衰减策略,具体参考[配置文件](./doc/doc_ch/config.md)
9
- 2020.6.8 添加[数据集](./doc/doc_ch/datasets.md),并保持持续更新
tink2123's avatar
tink2123 committed
10
- 2020.6.5 支持 `attetnion` 模型导出 `inference_model`
tink2123's avatar
tink2123 committed
11
- 2020.6.5 支持单独预测识别时,输出结果得分
12
- [more](./doc/doc_ch/update.md)
dyning's avatar
dyning committed
13

dyning's avatar
dyning committed
14
## 特性
dyning's avatar
dyning committed
15
16
17
- 超轻量级中文OCR,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
dyning's avatar
dyning committed
18
19
20
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE

tink2123's avatar
tink2123 committed
21
<a name="支持的中文模型列表"></a>
dyning's avatar
dyning committed
22
23
### 支持的中文模型列表:

tink2123's avatar
tink2123 committed
24
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
tink2123's avatar
tink2123 committed
25
|-|-|-|-|-|
26
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
tink2123's avatar
tink2123 committed
27
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
LDOUBLEV's avatar
LDOUBLEV committed
28

dyning's avatar
dyning committed
29
超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
LDOUBLEV's avatar
LDOUBLEV committed
30

tink2123's avatar
tink2123 committed
31
**也可以按如下教程快速体验中文OCR模型。**
LDOUBLEV's avatar
LDOUBLEV committed
32

dyning's avatar
dyning committed
33
## **超轻量级中文OCR以及通用中文OCR体验**
tink2123's avatar
tink2123 committed
34

LDOUBLEV's avatar
LDOUBLEV committed
35
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
36

tink2123's avatar
tink2123 committed
37
38
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)
[通用中文OCR效果展示](#通用中文OCR效果展示)[支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)
dyning's avatar
dyning committed
39

dyning's avatar
dyning committed
40
#### 1.环境配置
LDOUBLEV's avatar
LDOUBLEV committed
41

42
请先参考[快速安装](./doc/doc_ch/installation.md)配置PaddleOCR运行环境。
tink2123's avatar
tink2123 committed
43

dyning's avatar
dyning committed
44
#### 2.inference模型下载
LDOUBLEV's avatar
LDOUBLEV committed
45

tink2123's avatar
tink2123 committed
46
47
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*

tink2123's avatar
tink2123 committed
48

tink2123's avatar
tink2123 committed
49
#### 下载检测/识别模型并解压
tink2123's avatar
tink2123 committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63

复制[中文模型列表](#支持的中文模型列表) 中的检测和识别 `inference模型` 地址,下载并解压:

```
mkdir inference && cd inference
# 下载检测模型并解压
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# 下载识别模型并解压
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
cd ..
```

以超轻量级模型为例:

tink2123's avatar
tink2123 committed
64
```
LDOUBLEV's avatar
LDOUBLEV committed
65
mkdir inference && cd inference
dyning's avatar
dyning committed
66
# 下载超轻量级中文OCR模型的检测模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
67
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
dyning's avatar
dyning committed
68
# 下载超轻量级中文OCR模型的识别模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
69
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
dyning's avatar
dyning committed
70
cd ..
tink2123's avatar
tink2123 committed
71
72
```

tink2123's avatar
tink2123 committed
73
解压完毕后应有如下文件结构:
tink2123's avatar
tink2123 committed
74

tink2123's avatar
tink2123 committed
75
76
77
78
79
80
81
82
83
84
```
|-inference
    |-ch_rec_mv3_crnn
        |- model
        |- params
    |-ch_det_mv3_db
        |- model
        |- params
    ...
```
tink2123's avatar
tink2123 committed
85

dyning's avatar
dyning committed
86
87
#### 3.单张图像或者图像集合预测

dyning's avatar
dyning committed
88
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
dyning's avatar
dyning committed
89

90
```bash
tink2123's avatar
revert  
tink2123 committed
91

dyning's avatar
dyning committed
92
# 预测image_dir指定的单张图像
dyning's avatar
dyning committed
93
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
94
95

# 预测image_dir指定的图像集合
dyning's avatar
dyning committed
96
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
97

LDOUBLEV's avatar
LDOUBLEV committed
98
# 如果想使用CPU进行预测,需设置use_gpu参数为False
dyning's avatar
dyning committed
99
100
101
102
103
104
105
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
tink2123's avatar
tink2123 committed
106
```
LDOUBLEV's avatar
LDOUBLEV committed
107

108
109
110
111
112
113
114
带空格的通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:

```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
```

115
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/doc_ch/inference.md)
tink2123's avatar
tink2123 committed
116

dyning's avatar
dyning committed
117
## 文档教程
118
119
120
121
- [快速安装](./doc/doc_ch/installation.md)
- [文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
- [文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
- [基于预测引擎推理](./doc/doc_ch/inference.md)
LDOUBLEV's avatar
LDOUBLEV committed
122
- [yml配置文件参数介绍](./doc/doc_ch/config_ch.md)
123
- [数据集](./doc/doc_ch/datasets.md)
dyning's avatar
dyning committed
124
125
- [FAQ](#FAQ)
- [联系我们](#欢迎加入PaddleOCR技术交流群)
dyning's avatar
dyning committed
126
- [参考文献](#参考文献)
dyning's avatar
dyning committed
127

dyning's avatar
dyning committed
128
## 文本检测算法
tink2123's avatar
tink2123 committed
129
130

PaddleOCR开源的文本检测算法列表:
tink2123's avatar
tink2123 committed
131
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
132
133
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
134

dyning's avatar
dyning committed
135
在ICDAR2015文本检测公开数据集上,算法效果如下:
tink2123's avatar
tink2123 committed
136

LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
137
|模型|骨干网络|precision|recall|Hmean|下载链接|
138
|-|-|-|-|-|-|
dyning's avatar
dyning committed
139
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
140
141
142
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
143

MissPenguin's avatar
MissPenguin committed
144
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
145
146
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
147
148
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
tink2123's avatar
tink2123 committed
149

150
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
tink2123's avatar
tink2123 committed
151

152
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
tink2123's avatar
tink2123 committed
153

dyning's avatar
dyning committed
154
## 文本识别算法
tink2123's avatar
tink2123 committed
155
156

PaddleOCR开源的文本识别算法列表:
tink2123's avatar
tink2123 committed
157
158
159
160
161
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
162

dyning's avatar
dyning committed
163
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
tink2123's avatar
tink2123 committed
164

dyning's avatar
dyning committed
165
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
dyning's avatar
dyning committed
166
|-|-|-|-|-|
dyning's avatar
dyning committed
167
168
169
170
171
172
173
174
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
tink2123's avatar
tink2123 committed
175

MissPenguin's avatar
MissPenguin committed
176
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
177
178
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
179
180
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
tink2123's avatar
tink2123 committed
181

182
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
tink2123's avatar
tink2123 committed
183

dyning's avatar
dyning committed
184
185
## 端到端OCR算法
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
tink2123's avatar
tink2123 committed
186

dyning's avatar
dyning committed
187
<a name="超轻量级中文OCR效果展示"></a>
dyning's avatar
dyning committed
188
## 超轻量级中文OCR效果展示
tink2123's avatar
tink2123 committed
189

LDOUBLEV's avatar
LDOUBLEV committed
190
191
192
193
194
195
196
197
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
tink2123's avatar
tink2123 committed
198

dyning's avatar
dyning committed
199
<a name="通用中文OCR效果展示"></a>
200
201
202
203
204
## 通用中文OCR效果展示
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

tink2123's avatar
tink2123 committed
205
206
207
208
209
210
211
212
213
<a name="支持空格的中文OCR效果展示"></a>
## 支持空格的中文OCR效果展示

### 轻量级模型
![](doc/imgs_results/img_11.jpg)

### 通用模型
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)

dyning's avatar
dyning committed
214
<a name="FAQ"></a>
dyning's avatar
dyning committed
215
## FAQ
tink2123's avatar
tink2123 committed
216
1. **转换attention识别模型时报错:KeyError: 'predict'**  
MissPenguin's avatar
MissPenguin committed
217
问题已解,请更新到最新代码。  
tink2123's avatar
tink2123 committed
218

tink2123's avatar
tink2123 committed
219
2. **关于推理速度**  
root's avatar
root committed
220
图片中的文字较多时,预测时间会增,可以使用--rec_batch_num设置更小预测batch num,默认值为30,可以改为10或其他数值。  
MissPenguin's avatar
MissPenguin committed
221

tink2123's avatar
tink2123 committed
222
3. **服务部署与移动端部署**  
root's avatar
root committed
223
预计6月中下旬会先后发布基于Serving的服务部署方案和基于Paddle Lite的移动端部署方案,欢迎持续关注。  
tink2123's avatar
tink2123 committed
224

tink2123's avatar
tink2123 committed
225
4. **自研算法发布时间**  
root's avatar
root committed
226
自研算法SAST、SRN、End2End-PSL都将在6-7月陆续发布,敬请期待。  
MissPenguin's avatar
MissPenguin committed
227

228
[more](./doc/doc_ch/FAQ.md)
dyning's avatar
dyning committed
229

dyning's avatar
dyning committed
230
<a name="欢迎加入PaddleOCR技术交流群"></a>
dyning's avatar
dyning committed
231
## 欢迎加入PaddleOCR技术交流群
MissPenguin's avatar
MissPenguin committed
232
233
扫描二维码或者加微信:paddlehelp,备注OCR,小助手拉你进群~  
<img src="./doc/paddlehelp.jpg"  width = "200" height = "200" />
MissPenguin's avatar
MissPenguin committed
234

dyning's avatar
dyning committed
235
<a name="参考文献"></a>
dyning's avatar
dyning committed
236
## 参考文献
tink2123's avatar
tink2123 committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```
dyning's avatar
dyning committed
290
291
292
293

## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

LDOUBLEV's avatar
LDOUBLEV committed
294
## 贡献代码
dyning's avatar
dyning committed
295
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
tink2123's avatar
tink2123 committed
296
297

- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档。
LDOUBLEV's avatar
LDOUBLEV committed
298
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题