Unverified Commit 449fffed authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

Update README.md

parent 162035e9
...@@ -55,7 +55,7 @@ num_prediction_steps = len(noise_scheduler) ...@@ -55,7 +55,7 @@ num_prediction_steps = len(noise_scheduler)
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps): for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
# predict noise residual # predict noise residual
with torch.no_grad(): with torch.no_grad():
residual = unet(image, t) residual = unet(image, t)
# predict previous mean of image x_t-1 # predict previous mean of image x_t-1
pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t) pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t)
...@@ -63,8 +63,8 @@ for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_s ...@@ -63,8 +63,8 @@ for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_s
# optionally sample variance # optionally sample variance
variance = 0 variance = 0
if t > 0: if t > 0:
noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator) noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
variance = noise_scheduler.get_variance(t).sqrt() * noise variance = noise_scheduler.get_variance(t).sqrt() * noise
# set current image to prev_image: x_t -> x_t-1 # set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance image = pred_prev_image + variance
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment