pipeline_utils.py 7.45 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
24
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
Patrick von Platen committed
25
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
        "GaussianDDPMScheduler": ["save_config", "from_config"],
38
        "ClassifierFreeGuidanceScheduler": ["save_config", "from_config"],
39
        "GlideDDIMScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
40
41
    },
    "transformers": {
anton-l's avatar
anton-l committed
42
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
43
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
    },
}

47
48
49
50
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
51

Patrick von Platen's avatar
Patrick von Platen committed
52
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
53
54
55

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
56
    def register_modules(self, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
patil-suraj's avatar
patil-suraj committed
60
61
62
63
            # if library is not in LOADABLE_CLASSES, then it is a custom module
            if library not in LOADABLE_CLASSES:
                library = module.__module__.split(".")[-1]

Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
            # retrive class_name
            class_name = module.__class__.__name__

67
68
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
69
            # save model index config
70
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
71
72
73

            # set models
            setattr(self, name, module)
74

anton-l's avatar
Style  
anton-l committed
75
        register_dict = {"_module": self.__module__.split(".")[-1] + ".py"}
76
        self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

81
        model_index_dict = self.config
Patrick von Platen's avatar
Patrick von Platen committed
82
        model_index_dict.pop("_class_name")
83
        model_index_dict.pop("_diffusers_version")
84
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
85

anton-l's avatar
anton-l committed
86
87
88
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
89
90

            save_method_name = None
anton-l's avatar
anton-l committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
105
106
107

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
108
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
109
        Add docstrings
110
111
112
113
114
115
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
Patrick von Platen's avatar
Patrick von Platen committed
116

patil-suraj's avatar
patil-suraj committed
117
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
118
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
119
        if not os.path.isdir(pretrained_model_name_or_path):
120
121
122
123
124
125
126
127
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
128
129
        else:
            cached_folder = pretrained_model_name_or_path
130

patil-suraj's avatar
patil-suraj committed
131
        config_dict = cls.get_config_dict(cached_folder)
132

patil-suraj's avatar
patil-suraj committed
133
        # 2. Get class name and module candidates to load custom models
patil-suraj's avatar
patil-suraj committed
134
        class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
135
        module_candidate = config_dict["_module"]
patil-suraj's avatar
patil-suraj committed
136
        module_candidate_name = module_candidate.replace(".py", "")
Patrick von Platen's avatar
fix  
Patrick von Platen committed
137

patil-suraj's avatar
patil-suraj committed
138
        # 3. Load the pipeline class, if using custom module then load it from the hub
139
140
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
141
142
            pipeline_class = cls
        else:
143
144
            # else we need to load the correct module from the Hub
            class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
145
            module = module_candidate
146
            pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
147

148
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
149
150
151

        init_kwargs = {}

patil-suraj's avatar
patil-suraj committed
152
        # 4. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
153
        for name, (library_name, class_name) in init_dict.items():
patil-suraj's avatar
patil-suraj committed
154
155
156
157
            # if the model is not in diffusers or transformers, we need to load it from the hub
            # assumes that it's a subclass of ModelMixin
            if library_name == module_candidate_name:
                class_obj = get_class_from_dynamic_module(cached_folder, module, class_name, cached_folder)
158
                # since it's not from a library, we need to check class candidates for all importable classes
159
160
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
patil-suraj's avatar
patil-suraj committed
161
            else:
patil-suraj's avatar
patil-suraj committed
162
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
163
164
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
165
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
166
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
167

168
169
170
171
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
175
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
176
            if os.path.isdir(os.path.join(cached_folder, name)):
177
178
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
179
                # else load from the root directory
180
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
181

182
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
183

patil-suraj's avatar
patil-suraj committed
184
        # 5. Instantiate the pipeline
185
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
186
        return model