train_unconditional.py 29 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import logging
4
import math
anton-l's avatar
anton-l committed
5
import os
6
import shutil
7
8
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
9

10
import accelerate
11
import datasets
12
13
import torch
import torch.nn.functional as F
14
from accelerate import Accelerator
15
from accelerate.logging import get_logger
16
from accelerate.utils import ProjectConfiguration
anton-l's avatar
anton-l committed
17
from datasets import load_dataset
18
from huggingface_hub import HfFolder, Repository, create_repo, whoami
19
from packaging import version
20
from torchvision import transforms
anton-l's avatar
anton-l committed
21
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
22

23
24
25
26
import diffusers
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
27
from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available
28
from diffusers.utils.import_utils import is_xformers_available
29

anton-l's avatar
anton-l committed
30

31
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
32
check_min_version("0.18.0.dev0")
33

34
logger = get_logger(__name__, log_level="INFO")
anton-l's avatar
anton-l committed
35
36


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
73
74
75
76
77
78
    parser.add_argument(
        "--model_config_name_or_path",
        type=str,
        default=None,
        help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
    )
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
126
127
128
129
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
130
131
132
133
134
135
136
137
138
139
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
195
196
197
198
199
200
201
202
203
204
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
226
    parser.add_argument(
227
228
229
230
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
231
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
232
233
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
234
    parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
235
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
236
237
238
239
240
241
242
243
244
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
245
    parser.add_argument(
246
        "--checkpoints_total_limit",
247
248
        type=int,
        default=None,
249
        help=("Max number of checkpoints to store."),
250
    )
251
252
253
254
255
256
257
258
259
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
260
261
262
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
285
def main(args):
286
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
287
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
288

289
    accelerator = Accelerator(
290
        gradient_accumulation_steps=args.gradient_accumulation_steps,
291
        mixed_precision=args.mixed_precision,
292
        log_with=args.logger,
293
        project_config=accelerator_project_config,
294
    )
anton-l's avatar
anton-l committed
295

296
297
298
299
300
301
302
303
304
    if args.logger == "tensorboard":
        if not is_tensorboard_available():
            raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")

    elif args.logger == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if args.use_ema:
                ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))

            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(output_dir, "unet"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
                ema_model.load_state_dict(load_model.state_dict())
                ema_model.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
360
361
            create_repo(repo_name, exist_ok=True, token=args.hub_token)
            repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
362
363
364
365
366
367
368
369
370
371

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Initialize the model
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    if args.model_config_name_or_path is None:
        model = UNet2DModel(
            sample_size=args.resolution,
            in_channels=3,
            out_channels=3,
            layers_per_block=2,
            block_out_channels=(128, 128, 256, 256, 512, 512),
            down_block_types=(
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "AttnDownBlock2D",
                "DownBlock2D",
            ),
            up_block_types=(
                "UpBlock2D",
                "AttnUpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
            ),
        )
    else:
        config = UNet2DModel.load_config(args.model_config_name_or_path)
        model = UNet2DModel.from_config(config)
399

400
401
402
403
404
405
406
407
    # Create EMA for the model.
    if args.use_ema:
        ema_model = EMAModel(
            model.parameters(),
            decay=args.ema_max_decay,
            use_ema_warmup=True,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
408
409
            model_cls=UNet2DModel,
            model_config=model.config,
410
411
        )

412
413
414
415
416
417
418
419
420
421
422
423
424
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            model.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

425
426
    # Initialize the scheduler
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
427
    if accepts_prediction_type:
428
429
430
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
431
            prediction_type=args.prediction_type,
432
433
434
435
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

436
    # Initialize the optimizer
437
438
439
440
441
442
443
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
444

445
446
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
447

448
449
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
450
451
452
453
454
455
456
457
458
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
459
460
461
462
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
463
    augmentations = transforms.Compose(
464
        [
465
466
467
468
469
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
470
471
        ]
    )
anton-l's avatar
anton-l committed
472

473
    def transform_images(examples):
anton-l's avatar
anton-l committed
474
475
476
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

477
478
    logger.info(f"Dataset size: {len(dataset)}")

479
    dataset.set_transform(transform_images)
480
481
482
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
483

484
    # Initialize the learning rate scheduler
anton-l's avatar
anton-l committed
485
    lr_scheduler = get_scheduler(
486
        args.lr_scheduler,
anton-l's avatar
anton-l committed
487
        optimizer=optimizer,
488
489
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
490
491
    )

492
    # Prepare everything with our `accelerator`.
anton-l's avatar
anton-l committed
493
494
495
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
496

497
498
    if args.use_ema:
        ema_model.to(accelerator.device)
anton-l's avatar
anton-l committed
499

500
501
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
502
503
504
505
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

506
507
508
509
510
511
512
513
514
515
516
517
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    max_train_steps = args.num_epochs * num_update_steps_per_epoch

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

anton-l's avatar
anton-l committed
518
    global_step = 0
519
520
    first_epoch = 0

521
    # Potentially load in the weights and states from a previous save
522
523
524
525
526
527
528
529
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
545

546
    # Train!
547
    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
548
        model.train()
549
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
550
551
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
552
553
554
555
556
557
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

558
            clean_images = batch["input"]
559
560
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
561
            bsz = clean_images.shape[0]
562
563
            # Sample a random timestep for each image
            timesteps = torch.randint(
564
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
565
            ).long()
566

567
            # Add noise to the clean images according to the noise magnitude at each timestep
568
            # (this is the forward diffusion process)
569
570
571
572
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
573
574
                model_output = model(noisy_images, timesteps).sample

575
                if args.prediction_type == "epsilon":
576
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
577
                elif args.prediction_type == "sample":
578
579
580
581
582
583
584
585
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
586
587
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
588

589
                accelerator.backward(loss)
590

591
592
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
593
594
595
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
596

597
598
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
599
600
                if args.use_ema:
                    ema_model.step(model.parameters())
601
602
603
                progress_bar.update(1)
                global_step += 1

604
                if global_step % args.checkpointing_steps == 0:
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
                    # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                    if args.checkpoints_total_limit is not None:
                        checkpoints = os.listdir(args.output_dir)
                        checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                        checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                        # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                        if len(checkpoints) >= args.checkpoints_total_limit:
                            num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                            removing_checkpoints = checkpoints[0:num_to_remove]

                            logger.info(
                                f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                            )
                            logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                            for removing_checkpoint in removing_checkpoints:
                                removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                shutil.rmtree(removing_checkpoint)

625
626
627
628
629
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

630
631
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
632
                logs["ema_decay"] = ema_model.cur_decay_value
633
634
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
635
        progress_bar.close()
anton-l's avatar
anton-l committed
636

anton-l's avatar
anton-l committed
637
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
638

anton-l's avatar
anton-l committed
639
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
640
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
641
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
642
                unet = accelerator.unwrap_model(model)
643

644
                if args.use_ema:
645
                    ema_model.store(unet.parameters())
646
                    ema_model.copy_to(unet.parameters())
647

648
                pipeline = DDPMPipeline(
649
                    unet=unet,
650
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
651
                )
anton-l's avatar
anton-l committed
652

653
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
654
                # run pipeline in inference (sample random noise and denoise)
655
656
657
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
658
                    num_inference_steps=args.ddpm_num_inference_steps,
659
660
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
661

662
663
664
                if args.use_ema:
                    ema_model.restore(unet.parameters())

anton-l's avatar
anton-l committed
665
666
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
667

668
                if args.logger == "tensorboard":
669
670
671
                    if is_accelerate_version(">=", "0.17.0.dev0"):
                        tracker = accelerator.get_tracker("tensorboard", unwrap=True)
                    else:
672
                        tracker = accelerator.get_tracker("tensorboard")
673
                    tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch)
674
                elif args.logger == "wandb":
675
                    # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files
676
677
678
679
                    accelerator.get_tracker("wandb").log(
                        {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch},
                        step=global_step,
                    )
anton-l's avatar
anton-l committed
680

681
682
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
683
684
685
686
687
688
689
690
691
692
693
                unet = accelerator.unwrap_model(model)

                if args.use_ema:
                    ema_model.store(unet.parameters())
                    ema_model.copy_to(unet.parameters())

                pipeline = DDPMPipeline(
                    unet=unet,
                    scheduler=noise_scheduler,
                )

694
                pipeline.save_pretrained(args.output_dir)
695
696
697
698

                if args.use_ema:
                    ema_model.restore(unet.parameters())

699
                if args.push_to_hub:
700
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
701

702
703
    accelerator.end_training()

anton-l's avatar
anton-l committed
704
705

if __name__ == "__main__":
706
    args = parse_args()
anton-l's avatar
anton-l committed
707
    main(args)