test_pipelines.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
import tempfile
20
import tracemalloc
21
22
23
24
25
import unittest

import numpy as np
import torch

26
import accelerate
27
import PIL
28
import transformers
29
from diffusers import (
30
    AutoencoderKL,
31
32
33
34
35
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
36
    StableDiffusionImg2ImgPipeline,
37
    StableDiffusionInpaintPipelineLegacy,
38
    StableDiffusionPipeline,
39
    UNet2DConditionModel,
40
    UNet2DModel,
41
    VQModel,
42
    logging,
43
44
)
from diffusers.pipeline_utils import DiffusionPipeline
45
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
46
47
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, require_torch_gpu
48
from packaging import version
49
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
50
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
51
52
53
54
55


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
56
57
58
59
60
61
62
63
64
65
66
67
68
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
69
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
70
71
72
73
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
74
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
75
76
77
78
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
111
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
116
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
123
124
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
125
        )
126
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
132
133
134
135
136
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

248
249
    def test_components(self):
        """Test that components property works correctly"""
250
        unet = self.dummy_cond_unet
251
        scheduler = PNDMScheduler(skip_prk_steps=True)
252
253
254
255
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

256
257
258
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
259
260

        # make sure here that pndm scheduler skips prk
261
        inpaint = StableDiffusionInpaintPipelineLegacy(
262
263
264
265
266
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
267
            safety_checker=None,
268
            feature_extractor=self.dummy_extractor,
269
270
271
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
272
273

        prompt = "A painting of a squirrel eating a burger"
274
275
276
277
278
279
280

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

281
        image_inpaint = inpaint(
282
283
284
285
286
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
287
288
289
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
290
291
292
293
294
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
295
296
297
        ).images
        image_text2img = text2img(
            [prompt],
298
299
300
            generator=generator,
            num_inference_steps=2,
            output_type="np",
301
        ).images
302

303
304
305
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
306

307

308
309
@slow
class PipelineSlowTests(unittest.TestCase):
310
311
312
313
314
315
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

337
338
339
340
341
342
343
344
345
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
                DiffusionPipeline.from_pretrained(model_id, not_used=True, cache_dir=tmpdirname, force_download=True)

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

346
347
348
349
350
351
352
353
354
355
356
357
358
359
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
360
        ddpm.to(torch_device)
361
        ddpm.set_progress_bar_config(disable=None)
362
363
364
365

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
366
            new_ddpm.to(torch_device)
367
368

        generator = torch.manual_seed(0)
369
        image = ddpm(generator=generator, output_type="numpy").images
370

371
        generator = generator.manual_seed(0)
372
        new_image = new_ddpm(generator=generator, output_type="numpy").images
373
374
375
376
377
378

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

379
        scheduler = DDPMScheduler(num_train_timesteps=10)
380

381
382
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
383
        ddpm.set_progress_bar_config(disable=None)
384
385
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
386
        ddpm_from_hub.set_progress_bar_config(disable=None)
387
388

        generator = torch.manual_seed(0)
389
        image = ddpm(generator=generator, output_type="numpy").images
390

391
        generator = generator.manual_seed(0)
392
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
393
394
395
396
397
398

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

399
400
        scheduler = DDPMScheduler(num_train_timesteps=10)

401
402
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
403
404
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
405
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
406

407
408
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
409
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
410
411

        generator = torch.manual_seed(0)
412
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
413

414
        generator = generator.manual_seed(0)
415
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
416
417
418
419
420
421
422

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
423
        pipe.to(torch_device)
424
        pipe.set_progress_bar_config(disable=None)
425
426

        generator = torch.manual_seed(0)
427
        images = pipe(generator=generator, output_type="numpy").images
428
429
430
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

431
        images = pipe(generator=generator, output_type="pil").images
432
433
434
435
436
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
437
        images = pipe(generator=generator).images
438
439
440
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

441
442
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"
443

444
445
446
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
447

448
449
450
451
452
453
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
454

455
456
        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
457

458
459
        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
460

461
462
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
463

464
465
466
    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"
467

468
469
470
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
471

472
473
474
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
475

476
477
478
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
479

480
481
482
483
484
485
486
        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
487

488
489
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1
490

491
    @require_torch_gpu
492
493
494
495
496
497
498
499
500
501
502
503
    def test_stable_diffusion_accelerate_load_works(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        model_id = "CompVis/stable-diffusion-v1-4"
        _ = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        ).to(torch_device)

504
    @require_torch_gpu
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    def test_stable_diffusion_accelerate_load_reduces_memory_footprint(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        pipeline_id = "CompVis/stable-diffusion-v1-4"

        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        pipeline_normal_load = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        )
        pipeline_normal_load.to(torch_device)
        _, peak_normal = tracemalloc.get_traced_memory()
        tracemalloc.stop()

        del pipeline_normal_load
        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        _ = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        )
        _, peak_accelerate = tracemalloc.get_traced_memory()

        tracemalloc.stop()

        assert peak_accelerate < peak_normal
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

    @slow
    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_stable_diffusion_pipeline_with_unet_on_gpu_only(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()

        pipeline_id = "CompVis/stable-diffusion-v1-4"
        prompt = "Andromeda galaxy in a bottle"

        pipeline = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float32, use_auth_token=True
        )
        pipeline.cuda_with_minimal_gpu_usage()

        _ = pipeline(prompt)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 0.8 GB is allocated
        assert mem_bytes < 0.8 * 10**9