pipeline_utils.py 7.65 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
24
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
Patrick von Platen committed
25
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
37
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
38
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
39
        "ClassifierFreeGuidanceScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
40
41
    },
    "transformers": {
anton-l's avatar
anton-l committed
42
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
43
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
44
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
    },
}

48
49
50
51
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
52

Patrick von Platen's avatar
Patrick von Platen committed
53
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
57
    def register_modules(self, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
patil-suraj's avatar
patil-suraj committed
61
62
63
64
            # if library is not in LOADABLE_CLASSES, then it is a custom module
            if library not in LOADABLE_CLASSES:
                library = module.__module__.split(".")[-1]

Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
            # retrive class_name
            class_name = module.__class__.__name__

68
69
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
70
            # save model index config
71
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
72
73
74

            # set models
            setattr(self, name, module)
75

Patrick von Platen's avatar
Patrick von Platen committed
76
        register_dict = {"_module": self.__module__.split(".")[-1]}
77
        self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
81

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

82
        model_index_dict = self.config
Patrick von Platen's avatar
Patrick von Platen committed
83
        model_index_dict.pop("_class_name")
84
        model_index_dict.pop("_diffusers_version")
85
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
86

anton-l's avatar
anton-l committed
87
88
89
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
90
91

            save_method_name = None
anton-l's avatar
anton-l committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
109
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
110
        Add docstrings
111
112
113
114
115
116
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
Patrick von Platen's avatar
Patrick von Platen committed
117

patil-suraj's avatar
patil-suraj committed
118
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
119
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
120
        if not os.path.isdir(pretrained_model_name_or_path):
121
122
123
124
125
126
127
128
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
129
130
        else:
            cached_folder = pretrained_model_name_or_path
131

patil-suraj's avatar
patil-suraj committed
132
        config_dict = cls.get_config_dict(cached_folder)
133

patil-suraj's avatar
patil-suraj committed
134
        # 2. Get class name and module candidates to load custom models
Patrick von Platen's avatar
Patrick von Platen committed
135
136
        module_candidate_name = config_dict["_module"]
        module_candidate = module_candidate_name + ".py"
Patrick von Platen's avatar
fix  
Patrick von Platen committed
137

patil-suraj's avatar
patil-suraj committed
138
        # 3. Load the pipeline class, if using custom module then load it from the hub
139
140
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
141
142
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
146
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

            # (TODO - we should allow to load custom pipelines
147
            # else we need to load the correct module from the Hub
Patrick von Platen's avatar
Patrick von Platen committed
148
149
            # module = module_candidate
            # pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
150

151
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154

        init_kwargs = {}

patil-suraj's avatar
patil-suraj committed
155
        # 4. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
156
        for name, (library_name, class_name) in init_dict.items():
patil-suraj's avatar
patil-suraj committed
157
158
159
            # if the model is not in diffusers or transformers, we need to load it from the hub
            # assumes that it's a subclass of ModelMixin
            if library_name == module_candidate_name:
patil-suraj's avatar
patil-suraj committed
160
                class_obj = get_class_from_dynamic_module(cached_folder, module_candidate, class_name, cached_folder)
161
                # since it's not from a library, we need to check class candidates for all importable classes
162
163
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
patil-suraj's avatar
patil-suraj committed
164
            else:
patil-suraj's avatar
patil-suraj committed
165
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
166
167
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
168
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
169
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
170

171
172
173
174
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
175
176
177

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
178
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
179
            if os.path.isdir(os.path.join(cached_folder, name)):
180
181
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
182
                # else load from the root directory
183
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
184

185
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
186

patil-suraj's avatar
patil-suraj committed
187
        # 5. Instantiate the pipeline
188
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
189
        return model