attention.py 16.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Any, Dict, Optional
15
16

import torch
Patrick von Platen's avatar
Patrick von Platen committed
17
import torch.nn.functional as F
18
19
from torch import nn

20
from ..utils import maybe_allow_in_graph
21
from .activations import get_activation
Patrick von Platen's avatar
Patrick von Platen committed
22
from .attention_processor import Attention
Kashif Rasul's avatar
Kashif Rasul committed
23
from .embeddings import CombinedTimestepLabelEmbeddings
24
from .lora import LoRACompatibleLinear
25
26


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
    def __init__(self, query_dim, context_dim, n_heads, d_head):
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

    def forward(self, x, objs):
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


59
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
60
class BasicTransformerBlock(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
61
62
63
64
    r"""
    A basic Transformer block.

    Parameters:
Will Berman's avatar
Will Berman committed
65
66
67
68
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
Will Berman's avatar
Will Berman committed
69
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
70
71
72
73
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
Will Berman's avatar
Will Berman committed
74
75
76
77
78
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
Kashif Rasul's avatar
Kashif Rasul committed
79
80
81
82
83
    """

    def __init__(
        self,
        dim: int,
Will Berman's avatar
Will Berman committed
84
85
        num_attention_heads: int,
        attention_head_dim: int,
Kashif Rasul's avatar
Kashif Rasul committed
86
        dropout=0.0,
Will Berman's avatar
Will Berman committed
87
88
89
90
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
91
        only_cross_attention: bool = False,
92
        double_self_attention: bool = False,
93
        upcast_attention: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
94
95
96
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",
        final_dropout: bool = False,
97
        attention_type: str = "default",
Kashif Rasul's avatar
Kashif Rasul committed
98
    ):
Patrick von Platen's avatar
Patrick von Platen committed
99
        super().__init__()
100
        self.only_cross_attention = only_cross_attention
Kashif Rasul's avatar
Kashif Rasul committed
101
102
103
104
105
106
107
108
109

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )
110

111
        # Define 3 blocks. Each block has its own normalization layer.
112
        # 1. Self-Attn
113
114
115
116
117
118
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
Patrick von Platen's avatar
Patrick von Platen committed
119
        self.attn1 = Attention(
Will Berman's avatar
Will Berman committed
120
121
122
123
124
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
125
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
126
            upcast_attention=upcast_attention,
127
128
        )

129
        # 2. Cross-Attn
130
        if cross_attention_dim is not None or double_self_attention:
131
132
133
134
135
136
137
138
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
Patrick von Platen's avatar
Patrick von Platen committed
139
            self.attn2 = Attention(
140
                query_dim=dim,
141
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
142
143
144
145
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
146
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
147
            )  # is self-attn if encoder_hidden_states is none
148
149
        else:
            self.norm2 = None
150
            self.attn2 = None
151
152

        # 3. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
153
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
154
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
Patrick von Platen's avatar
Patrick von Platen committed
155

156
        # 4. Fuser
157
        if attention_type == "gated" or attention_type == "gated-text-image":
158
159
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

160
161
162
163
164
165
166
167
168
        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

169
170
    def forward(
        self,
171
172
173
174
175
176
177
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
178
    ):
179
        # Notice that normalization is always applied before the real computation in the following blocks.
180
        # 0. Self-Attention
Kashif Rasul's avatar
Kashif Rasul committed
181
182
183
184
185
186
187
188
189
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.use_ada_layer_norm_zero:
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        else:
            norm_hidden_states = self.norm1(hidden_states)

190
191
192
193
        # 1. Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 2. Prepare GLIGEN inputs
194
195
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
196

197
198
199
200
201
202
        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
Kashif Rasul's avatar
Kashif Rasul committed
203
204
        if self.use_ada_layer_norm_zero:
            attn_output = gate_msa.unsqueeze(1) * attn_output
205
        hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
206

207
        # 2.5 GLIGEN Control
208
209
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
210
        # 2.5 ends
211

212
        # 3. Cross-Attention
213
214
215
216
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
            )
Kashif Rasul's avatar
Kashif Rasul committed
217

218
219
220
            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
221
                attention_mask=encoder_attention_mask,
222
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
223
            )
224
            hidden_states = attn_output + hidden_states
Will Berman's avatar
Will Berman committed
225

226
        # 4. Feed-forward
Kashif Rasul's avatar
Kashif Rasul committed
227
228
229
230
231
        norm_hidden_states = self.norm3(hidden_states)

        if self.use_ada_layer_norm_zero:
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

232
233
234
235
236
237
238
239
240
        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
                raise ValueError(
                    f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
                )

            num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
            ff_output = torch.cat(
241
242
243
244
                [
                    self.ff(hid_slice, scale=lora_scale)
                    for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
                ],
245
246
247
                dim=self._chunk_dim,
            )
        else:
248
            ff_output = self.ff(norm_hidden_states, scale=lora_scale)
Kashif Rasul's avatar
Kashif Rasul committed
249
250
251
252
253

        if self.use_ada_layer_norm_zero:
            ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = ff_output + hidden_states
Will Berman's avatar
Will Berman committed
254

255
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258


class FeedForward(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
259
260
261
262
    r"""
    A feed-forward layer.

    Parameters:
Will Berman's avatar
Will Berman committed
263
264
265
266
267
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
Kashif Rasul's avatar
Kashif Rasul committed
268
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
Kashif Rasul's avatar
Kashif Rasul committed
269
270
271
    """

    def __init__(
Will Berman's avatar
Will Berman committed
272
273
274
275
276
277
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
Kashif Rasul's avatar
Kashif Rasul committed
278
        final_dropout: bool = False,
Kashif Rasul's avatar
Kashif Rasul committed
279
    ):
Patrick von Platen's avatar
Patrick von Platen committed
280
281
        super().__init__()
        inner_dim = int(dim * mult)
282
        dim_out = dim_out if dim_out is not None else dim
Patrick von Platen's avatar
Patrick von Platen committed
283

284
285
        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
Kashif Rasul's avatar
Kashif Rasul committed
286
287
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
288
289
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
290
        elif activation_fn == "geglu-approximate":
291
            act_fn = ApproximateGELU(dim, inner_dim)
Will Berman's avatar
Will Berman committed
292
293

        self.net = nn.ModuleList([])
294
        # project in
295
        self.net.append(act_fn)
296
297
298
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
299
        self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
Kashif Rasul's avatar
Kashif Rasul committed
300
301
302
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
303

304
    def forward(self, hidden_states, scale: float = 1.0):
305
        for module in self.net:
306
307
308
309
            if isinstance(module, (LoRACompatibleLinear, GEGLU)):
                hidden_states = module(hidden_states, scale)
            else:
                hidden_states = module(hidden_states)
310
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
311

Patrick von Platen's avatar
Patrick von Platen committed
312

313
314
class GELU(nn.Module):
    r"""
Kashif Rasul's avatar
Kashif Rasul committed
315
    GELU activation function with tanh approximation support with `approximate="tanh"`.
316
317
    """

Kashif Rasul's avatar
Kashif Rasul committed
318
    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
319
320
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
Kashif Rasul's avatar
Kashif Rasul committed
321
        self.approximate = approximate
322
323
324

    def gelu(self, gate):
        if gate.device.type != "mps":
Kashif Rasul's avatar
Kashif Rasul committed
325
            return F.gelu(gate, approximate=self.approximate)
326
        # mps: gelu is not implemented for float16
Kashif Rasul's avatar
Kashif Rasul committed
327
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
328
329
330
331
332
333
334

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
335
class GEGLU(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
336
337
338
339
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
Will Berman's avatar
Will Berman committed
340
341
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
Kashif Rasul's avatar
Kashif Rasul committed
342
343
344
    """

    def __init__(self, dim_in: int, dim_out: int):
Patrick von Platen's avatar
Patrick von Platen committed
345
        super().__init__()
346
        self.proj = LoRACompatibleLinear(dim_in, dim_out * 2)
Patrick von Platen's avatar
Patrick von Platen committed
347

348
349
350
351
352
353
    def gelu(self, gate):
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

354
355
    def forward(self, hidden_states, scale: float = 1.0):
        hidden_states, gate = self.proj(hidden_states, scale).chunk(2, dim=-1)
356
        return hidden_states * self.gelu(gate)
Will Berman's avatar
Will Berman committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391


class ApproximateGELU(nn.Module):
    """
    The approximate form of Gaussian Error Linear Unit (GELU)

    For more details, see section 2: https://arxiv.org/abs/1606.08415
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x):
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        emb = self.linear(self.silu(self.emb(timestep)))
        scale, shift = torch.chunk(emb, 2)
        x = self.norm(x) * (1 + scale) + shift
        return x
Kashif Rasul's avatar
Kashif Rasul committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412


class AdaLayerNormZero(nn.Module):
    """
    Norm layer adaptive layer norm zero (adaLN-Zero).
    """

    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()

        self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, timestep, class_labels, hidden_dtype=None):
        emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
413
414
415
416
417
418
419
420
421
422
423
424
425


class AdaGroupNorm(nn.Module):
    """
    GroupNorm layer modified to incorporate timestep embeddings.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps
426
427
428
429
430

        if act_fn is None:
            self.act = None
        else:
            self.act = get_activation(act_fn)
431
432
433
434
435
436
437
438
439
440
441
442
443

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x, emb):
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x