"vscode:/vscode.git/clone" did not exist on "9d9072a069202e7892a40ef94e9085019e73f370"
scheduling_dpmsolver_singlestep.py 57 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
18
from typing import List, Literal, Optional, Tuple, Union
19
20
21
22
23

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, is_scipy_available, logging
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
if is_scipy_available():
    import scipy.stats

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


35
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
36
def betas_for_alpha_bar(
37
38
39
40
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
41
42
43
44
45
46
47
48
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
49
50
51
52
53
54
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
55
56

    Returns:
57
58
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
59
    """
YiYi Xu's avatar
YiYi Xu committed
60
    if alpha_transform_type == "cosine":
61

YiYi Xu's avatar
YiYi Xu committed
62
63
64
65
66
67
68
69
70
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
71
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
72
73
74
75
76

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
77
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
78
79
80
81
82
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
    """
83
    `DPMSolverSinglestepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
84

85
86
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
87
88

    Args:
89
90
91
92
93
94
95
96
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
97
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
98
99
100
101
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
102
            sampling, and `solver_order=3` for unconditional sampling.
103
104
105
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
106
            Video](https://huggingface.co/papers/2210.02303) paper).
107
108
109
110
111
112
113
114
115
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
116
117
118
119
120
            Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
            type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
            `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
            paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
            sampling like in Stable Diffusion.
121
122
123
124
125
126
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
127
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
128
129
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
130
131
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
132
133
134
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
135
        final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
136
137
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
138
139
140
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
141
        variance_type (`str`, *optional*):
142
143
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
144
145
    """

Kashif Rasul's avatar
Kashif Rasul committed
146
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
164
        lower_order_final: bool = False,
165
        use_karras_sigmas: Optional[bool] = False,
166
        use_exponential_sigmas: Optional[bool] = False,
167
        use_beta_sigmas: Optional[bool] = False,
168
169
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
170
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
171
172
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
173
174
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
175
    ):
176
177
178
179
180
181
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
182
183
184
185
        if algorithm_type == "dpmsolver":
            deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)

186
187
188
189
190
191
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
192
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
193
194
195
196
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
197
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
198
199
200
201
202
203
204

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
205
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
206
207
208
209
210

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
211
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]:
212
            if algorithm_type == "deis":
213
                self.register_to_config(algorithm_type="dpmsolver++")
214
            else:
215
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
216
        if solver_type not in ["midpoint", "heun"]:
217
            if solver_type in ["logrho", "bh1", "bh2"]:
218
                self.register_to_config(solver_type="midpoint")
219
            else:
220
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
221

222
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
223
            raise ValueError(
224
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
225
226
            )

227
228
229
230
231
232
233
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.sample = None
        self.order_list = self.get_order_list(num_train_timesteps)
234
        self._step_index = None
235
        self._begin_index = None
236
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
237
238
239
240
241
242
243

    def get_order_list(self, num_inference_steps: int) -> List[int]:
        """
        Computes the solver order at each time step.

        Args:
            num_inference_steps (`int`):
244
                The number of diffusion steps used when generating samples with a pre-trained model.
245
246
        """
        steps = num_inference_steps
247
        order = self.config.solver_order
248
249
        if order > 3:
            raise ValueError("Order > 3 is not supported by this scheduler")
250
        if self.config.lower_order_final:
251
252
253
254
255
256
257
258
259
            if order == 3:
                if steps % 3 == 0:
                    orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
                elif steps % 3 == 1:
                    orders = [1, 2, 3] * (steps // 3) + [1]
                else:
                    orders = [1, 2, 3] * (steps // 3) + [1, 2]
            elif order == 2:
                if steps % 2 == 0:
260
                    orders = [1, 2] * (steps // 2 - 1) + [1, 1]
261
262
263
264
265
266
267
268
269
270
271
                else:
                    orders = [1, 2] * (steps // 2) + [1]
            elif order == 1:
                orders = [1] * steps
        else:
            if order == 3:
                orders = [1, 2, 3] * (steps // 3)
            elif order == 2:
                orders = [1, 2] * (steps // 2)
            elif order == 1:
                orders = [1] * steps
StAlKeR7779's avatar
StAlKeR7779 committed
272
273
274
275

        if self.config.final_sigmas_type == "zero":
            orders[-1] = 1

276
277
        return orders

278
279
280
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
281
        The index counter for current timestep. It will increase 1 after each scheduler step.
282
283
284
        """
        return self._step_index

285
286
287
288
289
290
291
292
293
294
295
296
297
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
298
            begin_index (`int`, defaults to `0`):
299
300
301
302
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

303
304
305
306
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
307
        mu: Optional[float] = None,
308
309
        timesteps: Optional[List[int]] = None,
    ):
310
        """
311
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
312
313
314

        Args:
            num_inference_steps (`int`):
315
316
317
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
318
319
320
321
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
                passed, `num_inference_steps` must be `None`.
322
        """
323
324
325
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
326
327
328
329
330
331
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")
332
333
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
334
335
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
336
337

        num_inference_steps = num_inference_steps or len(timesteps)
338
        self.num_inference_steps = num_inference_steps
339
340
341
342
343
344
345

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
        else:
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
YiYi Xu's avatar
YiYi Xu committed
346
            clipped_idx = clipped_idx.item()
347
348
349
350
351
352
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
353

354
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
355
        log_sigmas = np.log(sigmas)
356
        if self.config.use_karras_sigmas:
357
            sigmas = np.flip(sigmas).copy()
358
359
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
360
        elif self.config.use_exponential_sigmas:
361
362
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
363
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
364
        elif self.config.use_beta_sigmas:
365
366
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
367
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
368
369
370
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
371
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
372
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
373
374
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
375
376

        if self.config.final_sigmas_type == "sigma_min":
377
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
378
379
380
381
382
383
384
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
            )
        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
385

386
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
387

388
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
389
390
        self.model_outputs = [None] * self.config.solver_order
        self.sample = None
Patrick von Platen's avatar
Patrick von Platen committed
391
392

        if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
393
            logger.warning(
394
                "Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
Patrick von Platen's avatar
Patrick von Platen committed
395
396
397
            )
            self.register_to_config(lower_order_final=True)

398
        if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
399
            logger.warning(
400
401
402
403
                " `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
            )
            self.register_to_config(lower_order_final=True)

Patrick von Platen's avatar
Patrick von Platen committed
404
        self.order_list = self.get_order_list(num_inference_steps)
405

406
407
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
408
        self._begin_index = None
409
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
410

411
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
412
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
413
        """
414
415
        Apply dynamic thresholding to the predicted sample.

416
417
418
419
420
421
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
422
        https://huggingface.co/papers/2205.11487
423
424
425
426
427
428
429
430

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
431
432
        """
        dtype = sample.dtype
433
        batch_size, channels, *remaining_dims = sample.shape
434
435
436
437
438

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
439
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
440
441
442
443
444
445
446
447
448
449

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

450
        sample = sample.reshape(batch_size, channels, *remaining_dims)
451
452
453
        sample = sample.to(dtype)

        return sample
454

455
456
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
457
458
459
460
461
462
463
464
465
466
467
468
469
        """
        Convert sigma values to corresponding timestep values through interpolation.

        Args:
            sigma (`np.ndarray`):
                The sigma value(s) to convert to timestep(s).
            log_sigmas (`np.ndarray`):
                The logarithm of the sigma schedule used for interpolation.

        Returns:
            `np.ndarray`:
                The interpolated timestep value(s) corresponding to the input sigma(s).
        """
470
        # get log sigma
471
        log_sigma = np.log(np.maximum(sigma, 1e-10))
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

492
493
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
494
495
496
497
498
499
500
501
502
503
504
        """
        Convert sigma values to alpha_t and sigma_t values.

        Args:
            sigma (`torch.Tensor`):
                The sigma value(s) to convert.

        Returns:
            `Tuple[torch.Tensor, torch.Tensor]`:
                A tuple containing (alpha_t, sigma_t) values.
        """
505
506
507
508
509
510
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
511
512
513

        return alpha_t, sigma_t

514
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
515
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        """
        Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
        Models](https://huggingface.co/papers/2206.00364).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following the Karras noise schedule.
        """
530

Suraj Patil's avatar
Suraj Patil committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
545
546
547
548
549
550
551
552

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

553
554
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
555
556
557
558
559
560
561
562
563
564
565
566
567
        """
        Construct an exponential noise schedule.

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following an exponential schedule.
        """
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

584
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
585
586
        return sigmas

587
588
589
590
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        """
        Construct a beta noise schedule as proposed in [Beta Sampling is All You
        Need](https://huggingface.co/papers/2407.12173).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.
            alpha (`float`, *optional*, defaults to `0.6`):
                The alpha parameter for the beta distribution.
            beta (`float`, *optional*, defaults to `0.6`):
                The beta parameter for the beta distribution.

        Returns:
            `torch.Tensor`:
                The converted sigma values following a beta distribution schedule.
        """
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

625
        sigmas = np.array(
626
627
628
629
630
631
632
633
634
635
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

636
    def convert_model_output(
637
        self,
638
        model_output: torch.Tensor,
639
        *args,
640
        sample: torch.Tensor = None,
641
        **kwargs,
642
    ) -> torch.Tensor:
643
        """
644
645
646
647
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

Steven Liu's avatar
Steven Liu committed
648
649
        > [!TIP] > The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both
        noise > prediction and data prediction models.
650
651

        Args:
652
            model_output (`torch.Tensor`):
653
                The direct output from the learned diffusion model.
654
            sample (`torch.Tensor`):
655
                A current instance of a sample created by the diffusion process.
656
657

        Returns:
658
            `torch.Tensor`:
659
                The converted model output.
660
        """
661
662
663
664
665
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
666
                raise ValueError("missing `sample` as a required keyword argument")
667
668
669
670
671
672
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
673
        # DPM-Solver++ needs to solve an integral of the data prediction model.
674
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
675
            if self.config.prediction_type == "epsilon":
676
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
677
                if self.config.variance_type in ["learned", "learned_range"]:
678
                    model_output = model_output[:, :3]
679
680
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
681
682
683
684
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
685
686
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
687
                x0_pred = alpha_t * sample - sigma_t * model_output
688
689
690
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
691
692
            else:
                raise ValueError(
693
694
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the DPMSolverSinglestepScheduler."
695
696
697
                )

            if self.config.thresholding:
698
699
                x0_pred = self._threshold_sample(x0_pred)

700
            return x0_pred
701

702
703
704
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
            if self.config.prediction_type == "epsilon":
705
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
706
707
708
709
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
710
            elif self.config.prediction_type == "sample":
711
712
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
713
714
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
715
716
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
717
718
719
720
721
722
723
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

724
725
726
727
728
729
730
731
            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

732
733
    def dpm_solver_first_order_update(
        self,
734
        model_output: torch.Tensor,
735
        *args,
736
        sample: torch.Tensor = None,
737
        noise: Optional[torch.Tensor] = None,
738
        **kwargs,
739
    ) -> torch.Tensor:
740
        """
741
        One step for the first-order DPMSolver (equivalent to DDIM).
742
743

        Args:
744
            model_output (`torch.Tensor`):
745
746
747
748
749
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
750
            sample (`torch.Tensor`):
751
                A current instance of a sample created by the diffusion process.
752
753

        Returns:
754
            `torch.Tensor`:
755
                The sample tensor at the previous timestep.
756
        """
757
758
759
760
761
762
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
763
                raise ValueError("missing `sample` as a required keyword argument")
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
782
783
784
785
786
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
787
788
789
790
791
792
793
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
794
795
796
797
        return x_t

    def singlestep_dpm_solver_second_order_update(
        self,
798
        model_output_list: List[torch.Tensor],
799
        *args,
800
        sample: torch.Tensor = None,
801
        noise: Optional[torch.Tensor] = None,
802
        **kwargs,
803
    ) -> torch.Tensor:
804
        """
805
806
        One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-2]`.
807
808

        Args:
809
            model_output_list (`List[torch.Tensor]`):
810
811
812
813
814
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
815
            sample (`torch.Tensor`):
816
                A current instance of a sample created by the diffusion process.
817
818

        Returns:
819
            `torch.Tensor`:
820
                The sample tensor at the previous timestep.
821
        """
822
823
824
825
826
827
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
828
                raise ValueError("missing `sample` as a required keyword argument")
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

856
        m0, m1 = model_output_list[-1], model_output_list[-2]
857

858
859
860
861
        h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m1, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
862
            # See https://huggingface.co/papers/2211.01095 for detailed derivations
863
864
865
866
867
868
869
870
871
872
873
874
875
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
876
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
877
878
879
880
881
882
883
884
885
886
887
888
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
905
906
907
908
        return x_t

    def singlestep_dpm_solver_third_order_update(
        self,
909
        model_output_list: List[torch.Tensor],
910
        *args,
911
        sample: torch.Tensor = None,
StAlKeR7779's avatar
StAlKeR7779 committed
912
        noise: Optional[torch.Tensor] = None,
913
        **kwargs,
914
    ) -> torch.Tensor:
915
        """
916
917
        One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-3]`.
918
919

        Args:
920
            model_output_list (`List[torch.Tensor]`):
921
922
923
924
925
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
926
            sample (`torch.Tensor`):
927
                A current instance of a sample created by diffusion process.
928
929

        Returns:
930
            `torch.Tensor`:
931
                The sample tensor at the previous timestep.
932
        """
933
934
935
936
937
938
939

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
940
                raise ValueError("missing `sample` as a required keyword argument")
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
960
        )
961
962
963
964
965
966
967
968
969
970
971
972
973

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

974
975
976
977
978
979
980
        h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m2
        D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
        D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
        D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
981
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
982
983
984
985
986
987
988
989
990
991
992
993
994
995
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                    - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
996
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
                )
StAlKeR7779's avatar
StAlKeR7779 committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2 * torch.exp(-h)) * sample
                    + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1_1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2 * torch.exp(-h)) * sample
                    + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h) + (-2.0 * h)) / (-2.0 * h) ** 2 - 0.5)) * D2
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
1027
1028
1029
1030
        return x_t

    def singlestep_dpm_solver_update(
        self,
1031
        model_output_list: List[torch.Tensor],
1032
        *args,
1033
        sample: torch.Tensor = None,
1034
        order: int = None,
1035
        noise: Optional[torch.Tensor] = None,
1036
        **kwargs,
1037
    ) -> torch.Tensor:
1038
        """
1039
        One step for the singlestep DPMSolver.
1040
1041

        Args:
1042
            model_output_list (`List[torch.Tensor]`):
1043
1044
1045
1046
1047
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
1048
            sample (`torch.Tensor`):
1049
                A current instance of a sample created by diffusion process.
1050
            order (`int`):
1051
                The solver order at this step.
1052
1053

        Returns:
1054
            `torch.Tensor`:
1055
                The sample tensor at the previous timestep.
1056
        """
1057
1058
1059
1060
1061
1062
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
1063
                raise ValueError("missing `sample` as a required keyword argument")
1064
1065
1066
1067
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
1068
                raise ValueError("missing `order` as a required keyword argument")
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

1083
        if order == 1:
1084
            return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise)
1085
        elif order == 2:
1086
            return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
1087
        elif order == 3:
StAlKeR7779's avatar
StAlKeR7779 committed
1088
            return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample, noise=noise)
1089
1090
1091
        else:
            raise ValueError(f"Order must be 1, 2, 3, got {order}")

1092
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    def index_for_timestep(
        self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
    ) -> int:
        """
        Find the index for a given timestep in the schedule.

        Args:
            timestep (`int` or `torch.Tensor`):
                The timestep for which to find the index.
            schedule_timesteps (`torch.Tensor`, *optional*):
                The timestep schedule to search in. If `None`, uses `self.timesteps`.

        Returns:
            `int`:
                The index of the timestep in the schedule.
        """
1109
1110
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
1111

1112
        index_candidates = (schedule_timesteps == timestep).nonzero()
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

1125
1126
1127
1128
1129
1130
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
1131
1132
1133
1134

        Args:
            timestep (`int` or `torch.Tensor`):
                The current timestep for which to initialize the step index.
1135
1136
1137
1138
1139
1140
1141
1142
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
1143

1144
1145
    def step(
        self,
1146
        model_output: torch.Tensor,
1147
        timestep: Union[int, torch.Tensor],
1148
        sample: torch.Tensor,
1149
        generator=None,
1150
1151
1152
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
1153
1154
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the singlestep DPMSolver.
1155
1156

        Args:
1157
            model_output (`torch.Tensor`):
1158
1159
1160
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1161
            sample (`torch.Tensor`):
1162
1163
1164
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
1165
1166

        Returns:
1167
1168
1169
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
1170
1171
1172
1173
1174
1175
1176

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

1177
1178
        if self.step_index is None:
            self._init_step_index(timestep)
1179

1180
        model_output = self.convert_model_output(model_output, sample=sample)
1181
1182
1183
1184
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

1185
1186
1187
1188
1189
1190
1191
        if self.config.algorithm_type == "sde-dpmsolver++":
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

1192
        order = self.order_list[self.step_index]
Patrick von Platen's avatar
Patrick von Platen committed
1193
1194
1195
1196
1197
1198

        #  For img2img denoising might start with order>1 which is not possible
        #  In this case make sure that the first two steps are both order=1
        while self.model_outputs[-order] is None:
            order -= 1

1199
1200
1201
1202
        # For single-step solvers, we use the initial value at each time with order = 1.
        if order == 1:
            self.sample = sample

1203
1204
1205
        prev_sample = self.singlestep_dpm_solver_update(
            self.model_outputs, sample=self.sample, order=order, noise=noise
        )
1206

1207
        # upon completion increase step index by one, noise=noise
1208
        self._step_index += 1
1209
1210
1211
1212
1213
1214

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1215
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1216
1217
1218
1219
1220
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1221
            sample (`torch.Tensor`):
1222
                The input sample.
1223
1224

        Returns:
1225
            `torch.Tensor`:
1226
                A scaled input sample.
1227
1228
1229
        """
        return sample

1230
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1231
1232
    def add_noise(
        self,
1233
1234
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1235
        timesteps: torch.IntTensor,
1236
    ) -> torch.Tensor:
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
        """
        Add noise to the original samples according to the noise schedule at the specified timesteps.

        Args:
            original_samples (`torch.Tensor`):
                The original samples without noise.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps at which to add noise to the samples.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
1252
1253
1254
1255
1256
1257
1258
1259
1260
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1261

1262
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1263
1264
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1265
1266
1267
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1268
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1269
            # add noise is called before first denoising step to create initial latent(img2img)
1270
            step_indices = [self.begin_index] * timesteps.shape[0]
1271

1272
1273
1274
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1275

1276
1277
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1278
1279
1280
1281
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps