scheduling_dpmsolver_singlestep.py 53.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, is_scipy_available, logging
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
if is_scipy_available():
    import scipy.stats

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


35
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
36
37
38
39
40
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
41
42
43
44
45
46
47
48
49
50
51
52
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
53
54
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
55
56
57
58

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
59
    if alpha_transform_type == "cosine":
60

YiYi Xu's avatar
YiYi Xu committed
61
62
63
64
65
66
67
68
69
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
70
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
71
72
73
74
75

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
76
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
77
78
79
80
81
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
    """
82
    `DPMSolverSinglestepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
83

84
85
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
86
87

    Args:
88
89
90
91
92
93
94
95
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
96
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
97
98
99
100
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
101
            sampling, and `solver_order=3` for unconditional sampling.
102
103
104
105
106
107
108
109
110
111
112
113
114
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
115
116
117
118
119
            Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
            type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
            `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
            paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
            sampling like in Stable Diffusion.
120
121
122
123
124
125
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
126
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
127
128
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
129
130
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
131
132
133
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
134
        final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
135
136
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
137
138
139
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
140
        variance_type (`str`, *optional*):
141
142
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
143
144
    """

Kashif Rasul's avatar
Kashif Rasul committed
145
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
163
        lower_order_final: bool = False,
164
        use_karras_sigmas: Optional[bool] = False,
165
        use_exponential_sigmas: Optional[bool] = False,
166
        use_beta_sigmas: Optional[bool] = False,
167
168
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
169
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
170
171
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
172
173
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
174
    ):
175
176
177
178
179
180
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
181
182
183
184
        if algorithm_type == "dpmsolver":
            deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)

185
186
187
188
189
190
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
191
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
192
193
194
195
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
196
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
197
198
199
200
201
202
203

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
204
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
205
206
207
208
209

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
210
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]:
211
            if algorithm_type == "deis":
212
                self.register_to_config(algorithm_type="dpmsolver++")
213
            else:
214
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
215
        if solver_type not in ["midpoint", "heun"]:
216
            if solver_type in ["logrho", "bh1", "bh2"]:
217
                self.register_to_config(solver_type="midpoint")
218
            else:
219
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
220

221
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
222
            raise ValueError(
223
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
224
225
            )

226
227
228
229
230
231
232
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.sample = None
        self.order_list = self.get_order_list(num_train_timesteps)
233
        self._step_index = None
234
        self._begin_index = None
235
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
236
237
238
239
240
241
242

    def get_order_list(self, num_inference_steps: int) -> List[int]:
        """
        Computes the solver order at each time step.

        Args:
            num_inference_steps (`int`):
243
                The number of diffusion steps used when generating samples with a pre-trained model.
244
245
        """
        steps = num_inference_steps
246
        order = self.config.solver_order
247
248
        if order > 3:
            raise ValueError("Order > 3 is not supported by this scheduler")
249
        if self.config.lower_order_final:
250
251
252
253
254
255
256
257
258
            if order == 3:
                if steps % 3 == 0:
                    orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
                elif steps % 3 == 1:
                    orders = [1, 2, 3] * (steps // 3) + [1]
                else:
                    orders = [1, 2, 3] * (steps // 3) + [1, 2]
            elif order == 2:
                if steps % 2 == 0:
259
                    orders = [1, 2] * (steps // 2 - 1) + [1, 1]
260
261
262
263
264
265
266
267
268
269
270
                else:
                    orders = [1, 2] * (steps // 2) + [1]
            elif order == 1:
                orders = [1] * steps
        else:
            if order == 3:
                orders = [1, 2, 3] * (steps // 3)
            elif order == 2:
                orders = [1, 2] * (steps // 2)
            elif order == 1:
                orders = [1] * steps
StAlKeR7779's avatar
StAlKeR7779 committed
271
272
273
274

        if self.config.final_sigmas_type == "zero":
            orders[-1] = 1

275
276
        return orders

277
278
279
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
280
        The index counter for current timestep. It will increase 1 after each scheduler step.
281
282
283
        """
        return self._step_index

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

302
303
304
305
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
306
        mu: Optional[float] = None,
307
308
        timesteps: Optional[List[int]] = None,
    ):
309
        """
310
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
311
312
313

        Args:
            num_inference_steps (`int`):
314
315
316
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
317
318
319
320
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
                passed, `num_inference_steps` must be `None`.
321
        """
322
323
324
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
325
326
327
328
329
330
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")
331
332
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
333
334
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
335
336

        num_inference_steps = num_inference_steps or len(timesteps)
337
        self.num_inference_steps = num_inference_steps
338
339
340
341
342
343
344

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
        else:
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
YiYi Xu's avatar
YiYi Xu committed
345
            clipped_idx = clipped_idx.item()
346
347
348
349
350
351
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
352

353
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
354
        log_sigmas = np.log(sigmas)
355
        if self.config.use_karras_sigmas:
356
            sigmas = np.flip(sigmas).copy()
357
358
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
359
        elif self.config.use_exponential_sigmas:
360
361
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
362
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
363
        elif self.config.use_beta_sigmas:
364
365
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
366
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
367
368
369
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
370
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
371
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
372
373
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
374
375

        if self.config.final_sigmas_type == "sigma_min":
376
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
377
378
379
380
381
382
383
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
            )
        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
384

385
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
386

387
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
388
389
        self.model_outputs = [None] * self.config.solver_order
        self.sample = None
Patrick von Platen's avatar
Patrick von Platen committed
390
391

        if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
392
            logger.warning(
393
                "Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
            )
            self.register_to_config(lower_order_final=True)

397
        if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
398
            logger.warning(
399
400
401
402
                " `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
            )
            self.register_to_config(lower_order_final=True)

Patrick von Platen's avatar
Patrick von Platen committed
403
        self.order_list = self.get_order_list(num_inference_steps)
404

405
406
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
407
        self._begin_index = None
408
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
409

410
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
411
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
412
413
414
415
416
417
418
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
419
        https://huggingface.co/papers/2205.11487
420
421
        """
        dtype = sample.dtype
422
        batch_size, channels, *remaining_dims = sample.shape
423
424
425
426
427

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
428
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
429
430
431
432
433
434
435
436
437
438

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

439
        sample = sample.reshape(batch_size, channels, *remaining_dims)
440
441
442
        sample = sample.to(dtype)

        return sample
443

444
445
446
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
447
        log_sigma = np.log(np.maximum(sigma, 1e-10))
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

468
469
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
470
471
472
473
474
475
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
476
477
478

        return alpha_t, sigma_t

479
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
480
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
481
482
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
497
498
499
500
501
502
503
504

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

524
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
525
526
        return sigmas

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

548
        sigmas = np.array(
549
550
551
552
553
554
555
556
557
558
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

559
    def convert_model_output(
560
        self,
561
        model_output: torch.Tensor,
562
        *args,
563
        sample: torch.Tensor = None,
564
        **kwargs,
565
    ) -> torch.Tensor:
566
        """
567
568
569
570
571
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>
572

573
574
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.
575

576
        </Tip>
577
578

        Args:
579
            model_output (`torch.Tensor`):
580
                The direct output from the learned diffusion model.
581
            sample (`torch.Tensor`):
582
                A current instance of a sample created by the diffusion process.
583
584

        Returns:
585
            `torch.Tensor`:
586
                The converted model output.
587
        """
588
589
590
591
592
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
593
                raise ValueError("missing `sample` as a required keyword argument")
594
595
596
597
598
599
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
600
        # DPM-Solver++ needs to solve an integral of the data prediction model.
601
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
602
            if self.config.prediction_type == "epsilon":
603
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
604
                if self.config.variance_type in ["learned", "learned_range"]:
605
                    model_output = model_output[:, :3]
606
607
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
608
609
610
611
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
612
613
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
614
                x0_pred = alpha_t * sample - sigma_t * model_output
615
616
617
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
618
619
            else:
                raise ValueError(
620
621
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the DPMSolverSinglestepScheduler."
622
623
624
                )

            if self.config.thresholding:
625
626
                x0_pred = self._threshold_sample(x0_pred)

627
            return x0_pred
628

629
630
631
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
            if self.config.prediction_type == "epsilon":
632
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
633
634
635
636
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
637
            elif self.config.prediction_type == "sample":
638
639
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
640
641
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
642
643
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
644
645
646
647
648
649
650
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

651
652
653
654
655
656
657
658
            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

659
660
    def dpm_solver_first_order_update(
        self,
661
        model_output: torch.Tensor,
662
        *args,
663
        sample: torch.Tensor = None,
664
        noise: Optional[torch.Tensor] = None,
665
        **kwargs,
666
    ) -> torch.Tensor:
667
        """
668
        One step for the first-order DPMSolver (equivalent to DDIM).
669
670

        Args:
671
            model_output (`torch.Tensor`):
672
673
674
675
676
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
677
            sample (`torch.Tensor`):
678
                A current instance of a sample created by the diffusion process.
679
680

        Returns:
681
            `torch.Tensor`:
682
                The sample tensor at the previous timestep.
683
        """
684
685
686
687
688
689
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
690
                raise ValueError("missing `sample` as a required keyword argument")
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
709
710
711
712
713
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
714
715
716
717
718
719
720
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
721
722
723
724
        return x_t

    def singlestep_dpm_solver_second_order_update(
        self,
725
        model_output_list: List[torch.Tensor],
726
        *args,
727
        sample: torch.Tensor = None,
728
        noise: Optional[torch.Tensor] = None,
729
        **kwargs,
730
    ) -> torch.Tensor:
731
        """
732
733
        One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-2]`.
734
735

        Args:
736
            model_output_list (`List[torch.Tensor]`):
737
738
739
740
741
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
742
            sample (`torch.Tensor`):
743
                A current instance of a sample created by the diffusion process.
744
745

        Returns:
746
            `torch.Tensor`:
747
                The sample tensor at the previous timestep.
748
        """
749
750
751
752
753
754
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
755
                raise ValueError("missing `sample` as a required keyword argument")
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

783
        m0, m1 = model_output_list[-1], model_output_list[-2]
784

785
786
787
788
        h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m1, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
789
            # See https://huggingface.co/papers/2211.01095 for detailed derivations
790
791
792
793
794
795
796
797
798
799
800
801
802
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
803
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
804
805
806
807
808
809
810
811
812
813
814
815
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
832
833
834
835
        return x_t

    def singlestep_dpm_solver_third_order_update(
        self,
836
        model_output_list: List[torch.Tensor],
837
        *args,
838
        sample: torch.Tensor = None,
StAlKeR7779's avatar
StAlKeR7779 committed
839
        noise: Optional[torch.Tensor] = None,
840
        **kwargs,
841
    ) -> torch.Tensor:
842
        """
843
844
        One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-3]`.
845
846

        Args:
847
            model_output_list (`List[torch.Tensor]`):
848
849
850
851
852
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
853
            sample (`torch.Tensor`):
854
                A current instance of a sample created by diffusion process.
855
856

        Returns:
857
            `torch.Tensor`:
858
                The sample tensor at the previous timestep.
859
        """
860
861
862
863
864
865
866

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
867
                raise ValueError("missing `sample` as a required keyword argument")
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
887
        )
888
889
890
891
892
893
894
895
896
897
898
899
900

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

901
902
903
904
905
906
907
        h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m2
        D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
        D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
        D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
908
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
909
910
911
912
913
914
915
916
917
918
919
920
921
922
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                    - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
923
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
924
925
926
927
928
929
930
931
932
933
934
935
936
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
                )
StAlKeR7779's avatar
StAlKeR7779 committed
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2 * torch.exp(-h)) * sample
                    + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1_1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2 * torch.exp(-h)) * sample
                    + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h) + (-2.0 * h)) / (-2.0 * h) ** 2 - 0.5)) * D2
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
954
955
956
957
        return x_t

    def singlestep_dpm_solver_update(
        self,
958
        model_output_list: List[torch.Tensor],
959
        *args,
960
        sample: torch.Tensor = None,
961
        order: int = None,
962
        noise: Optional[torch.Tensor] = None,
963
        **kwargs,
964
    ) -> torch.Tensor:
965
        """
966
        One step for the singlestep DPMSolver.
967
968

        Args:
969
            model_output_list (`List[torch.Tensor]`):
970
971
972
973
974
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
975
            sample (`torch.Tensor`):
976
                A current instance of a sample created by diffusion process.
977
            order (`int`):
978
                The solver order at this step.
979
980

        Returns:
981
            `torch.Tensor`:
982
                The sample tensor at the previous timestep.
983
        """
984
985
986
987
988
989
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
990
                raise ValueError("missing `sample` as a required keyword argument")
991
992
993
994
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
995
                raise ValueError("missing `order` as a required keyword argument")
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

1010
        if order == 1:
1011
            return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise)
1012
        elif order == 2:
1013
            return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
1014
        elif order == 3:
StAlKeR7779's avatar
StAlKeR7779 committed
1015
            return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample, noise=noise)
1016
1017
1018
        else:
            raise ValueError(f"Order must be 1, 2, 3, got {order}")

1019
1020
1021
1022
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
1023

1024
        index_candidates = (schedule_timesteps == timestep).nonzero()
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
1051

1052
1053
    def step(
        self,
1054
        model_output: torch.Tensor,
1055
        timestep: Union[int, torch.Tensor],
1056
        sample: torch.Tensor,
1057
        generator=None,
1058
1059
1060
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
1061
1062
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the singlestep DPMSolver.
1063
1064

        Args:
1065
            model_output (`torch.Tensor`):
1066
1067
1068
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1069
            sample (`torch.Tensor`):
1070
1071
1072
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
1073
1074

        Returns:
1075
1076
1077
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
1078
1079
1080
1081
1082
1083
1084

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

1085
1086
        if self.step_index is None:
            self._init_step_index(timestep)
1087

1088
        model_output = self.convert_model_output(model_output, sample=sample)
1089
1090
1091
1092
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

1093
1094
1095
1096
1097
1098
1099
        if self.config.algorithm_type == "sde-dpmsolver++":
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

1100
        order = self.order_list[self.step_index]
Patrick von Platen's avatar
Patrick von Platen committed
1101
1102
1103
1104
1105
1106

        #  For img2img denoising might start with order>1 which is not possible
        #  In this case make sure that the first two steps are both order=1
        while self.model_outputs[-order] is None:
            order -= 1

1107
1108
1109
1110
        # For single-step solvers, we use the initial value at each time with order = 1.
        if order == 1:
            self.sample = sample

1111
1112
1113
        prev_sample = self.singlestep_dpm_solver_update(
            self.model_outputs, sample=self.sample, order=order, noise=noise
        )
1114

1115
        # upon completion increase step index by one, noise=noise
1116
        self._step_index += 1
1117
1118
1119
1120
1121
1122

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1123
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1124
1125
1126
1127
1128
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1129
            sample (`torch.Tensor`):
1130
                The input sample.
1131
1132

        Returns:
1133
            `torch.Tensor`:
1134
                A scaled input sample.
1135
1136
1137
        """
        return sample

1138
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1139
1140
    def add_noise(
        self,
1141
1142
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1143
        timesteps: torch.IntTensor,
1144
    ) -> torch.Tensor:
1145
1146
1147
1148
1149
1150
1151
1152
1153
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1154

1155
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1156
1157
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1158
1159
1160
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1161
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1162
            # add noise is called before first denoising step to create initial latent(img2img)
1163
            step_indices = [self.begin_index] * timesteps.shape[0]
1164

1165
1166
1167
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1168

1169
1170
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1171
1172
1173
1174
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps