scheduling_dpmsolver_singlestep.py 45 KB
Newer Older
1
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, logging
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
26
27


Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


31
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
32
33
34
35
36
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
37
38
39
40
41
42
43
44
45
46
47
48
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
49
50
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
51
52
53
54

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
55
    if alpha_transform_type == "cosine":
56

YiYi Xu's avatar
YiYi Xu committed
57
58
59
60
61
62
63
64
65
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
66
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
67
68
69
70
71

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
72
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
73
74
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
    """
78
    `DPMSolverSinglestepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
79

80
81
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
82
83

    Args:
84
85
86
87
88
89
90
91
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
92
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
93
94
95
96
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
97
            sampling, and `solver_order=3` for unconditional sampling.
98
99
100
101
102
103
104
105
106
107
108
109
110
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
111
112
113
114
115
            Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
            algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the `dpmsolver++` type
            implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is
            recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in
            Stable Diffusion.
116
117
118
119
120
121
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
122
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
123
124
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
125
        final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
126
127
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
128
129
130
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
131
        variance_type (`str`, *optional*):
132
133
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
134
135
    """

Kashif Rasul's avatar
Kashif Rasul committed
136
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
154
        lower_order_final: bool = False,
155
        use_karras_sigmas: Optional[bool] = False,
156
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
157
158
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
159
    ):
160
161
162
163
        if algorithm_type == "dpmsolver":
            deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)

164
165
166
167
168
169
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
170
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
171
172
173
174
175
176
177
178
179
180
181
182
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
183
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
184
185
186
187
188
189

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
        if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
190
            if algorithm_type == "deis":
191
                self.register_to_config(algorithm_type="dpmsolver++")
192
193
            else:
                raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
194
        if solver_type not in ["midpoint", "heun"]:
195
            if solver_type in ["logrho", "bh1", "bh2"]:
196
                self.register_to_config(solver_type="midpoint")
197
198
            else:
                raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
199

200
201
202
203
204
        if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero":
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
            )

205
206
207
208
209
210
211
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.sample = None
        self.order_list = self.get_order_list(num_train_timesteps)
212
        self._step_index = None
213
        self._begin_index = None
214
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
215
216
217
218
219
220
221

    def get_order_list(self, num_inference_steps: int) -> List[int]:
        """
        Computes the solver order at each time step.

        Args:
            num_inference_steps (`int`):
222
                The number of diffusion steps used when generating samples with a pre-trained model.
223
224
        """
        steps = num_inference_steps
225
        order = self.config.solver_order
226
227
        if order > 3:
            raise ValueError("Order > 3 is not supported by this scheduler")
228
        if self.config.lower_order_final:
229
230
231
232
233
234
235
236
237
            if order == 3:
                if steps % 3 == 0:
                    orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
                elif steps % 3 == 1:
                    orders = [1, 2, 3] * (steps // 3) + [1]
                else:
                    orders = [1, 2, 3] * (steps // 3) + [1, 2]
            elif order == 2:
                if steps % 2 == 0:
238
                    orders = [1, 2] * (steps // 2 - 1) + [1, 1]
239
240
241
242
243
244
245
246
247
248
249
250
251
                else:
                    orders = [1, 2] * (steps // 2) + [1]
            elif order == 1:
                orders = [1] * steps
        else:
            if order == 3:
                orders = [1, 2, 3] * (steps // 3)
            elif order == 2:
                orders = [1, 2] * (steps // 2)
            elif order == 1:
                orders = [1] * steps
        return orders

252
253
254
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
255
        The index counter for current timestep. It will increase 1 after each scheduler step.
256
257
258
        """
        return self._step_index

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

277
278
279
280
281
282
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
283
        """
284
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
285
286
287

        Args:
            num_inference_steps (`int`):
288
289
290
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
291
292
293
294
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
                passed, `num_inference_steps` must be `None`.
295
        """
296
297
298
299
300
301
302
303
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")

        num_inference_steps = num_inference_steps or len(timesteps)
304
        self.num_inference_steps = num_inference_steps
305
306
307
308
309
310
311
312
313
314
315
316
317

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
        else:
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
318

319
320
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
321
            log_sigmas = np.log(sigmas)
322
            sigmas = np.flip(sigmas).copy()
323
324
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
325
326
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
327
328

        if self.config.final_sigmas_type == "sigma_min":
329
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
330
331
332
333
334
335
336
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
            )
        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
337

338
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
339

340
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
341
342
        self.model_outputs = [None] * self.config.solver_order
        self.sample = None
Patrick von Platen's avatar
Patrick von Platen committed
343
344

        if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
345
            logger.warning(
346
                "Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
Patrick von Platen's avatar
Patrick von Platen committed
347
348
349
            )
            self.register_to_config(lower_order_final=True)

350
        if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
351
            logger.warning(
352
353
354
355
                " `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
            )
            self.register_to_config(lower_order_final=True)

Patrick von Platen's avatar
Patrick von Platen committed
356
        self.order_list = self.get_order_list(num_inference_steps)
357

358
359
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
360
        self._begin_index = None
361
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
362

363
364
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
365
366
367
368
369
370
371
372
373
374
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
375
        batch_size, channels, *remaining_dims = sample.shape
376
377
378
379
380

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
381
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
382
383
384
385
386
387
388
389
390
391

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

392
        sample = sample.reshape(batch_size, channels, *remaining_dims)
393
394
395
        sample = sample.to(dtype)

        return sample
396

397
398
399
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
400
        log_sigma = np.log(np.maximum(sigma, 1e-10))
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

421
422
423
424
425
426
427
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

428
429
430
431
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
446
447
448
449
450
451
452
453

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

454
    def convert_model_output(
455
456
457
458
459
        self,
        model_output: torch.FloatTensor,
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
460
461
    ) -> torch.FloatTensor:
        """
462
463
464
465
466
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>
467

468
469
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.
470

471
        </Tip>
472
473

        Args:
474
475
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
476
            sample (`torch.FloatTensor`):
477
                A current instance of a sample created by the diffusion process.
478
479

        Returns:
480
481
            `torch.FloatTensor`:
                The converted model output.
482
        """
483
484
485
486
487
488
489
490
491
492
493
494
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
495
496
497
        # DPM-Solver++ needs to solve an integral of the data prediction model.
        if self.config.algorithm_type == "dpmsolver++":
            if self.config.prediction_type == "epsilon":
498
499
500
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned_range"]:
                    model_output = model_output[:, :3]
501
502
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
503
504
505
506
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
507
508
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
509
510
511
512
513
514
515
516
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

            if self.config.thresholding:
517
518
                x0_pred = self._threshold_sample(x0_pred)

519
520
521
522
            return x0_pred
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
            if self.config.prediction_type == "epsilon":
523
524
525
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned_range"]:
                    model_output = model_output[:, :3]
526
527
                return model_output
            elif self.config.prediction_type == "sample":
528
529
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
530
531
532
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
533
534
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
535
536
537
538
539
540
541
542
543
544
545
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

    def dpm_solver_first_order_update(
        self,
        model_output: torch.FloatTensor,
546
547
548
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
549
550
    ) -> torch.FloatTensor:
        """
551
        One step for the first-order DPMSolver (equivalent to DDIM).
552
553

        Args:
554
555
556
557
558
559
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
560
            sample (`torch.FloatTensor`):
561
                A current instance of a sample created by the diffusion process.
562
563

        Returns:
564
565
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
566
        """
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
592
593
594
595
596
597
598
599
600
601
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
        return x_t

    def singlestep_dpm_solver_second_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
602
603
604
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
605
606
    ) -> torch.FloatTensor:
        """
607
608
        One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-2]`.
609
610
611

        Args:
            model_output_list (`List[torch.FloatTensor]`):
612
613
614
615
616
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
617
            sample (`torch.FloatTensor`):
618
                A current instance of a sample created by the diffusion process.
619
620

        Returns:
621
622
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
623
        """
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

658
        m0, m1 = model_output_list[-1], model_output_list[-2]
659

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
        h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m1, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
        return x_t

    def singlestep_dpm_solver_third_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
696
697
698
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
699
700
    ) -> torch.FloatTensor:
        """
701
702
        One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-3]`.
703
704
705

        Args:
            model_output_list (`List[torch.FloatTensor]`):
706
707
708
709
710
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
711
            sample (`torch.FloatTensor`):
712
                A current instance of a sample created by diffusion process.
713
714

        Returns:
715
716
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
717
        """
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
745
        )
746
747
748
749
750
751
752
753
754
755
756
757
758

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
        h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m2
        D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
        D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
        D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                    - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
                )
        return x_t

    def singlestep_dpm_solver_update(
        self,
        model_output_list: List[torch.FloatTensor],
800
801
802
803
        *args,
        sample: torch.FloatTensor = None,
        order: int = None,
        **kwargs,
804
805
    ) -> torch.FloatTensor:
        """
806
        One step for the singlestep DPMSolver.
807
808
809

        Args:
            model_output_list (`List[torch.FloatTensor]`):
810
811
812
813
814
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
815
            sample (`torch.FloatTensor`):
816
                A current instance of a sample created by diffusion process.
817
            order (`int`):
818
                The solver order at this step.
819
820

        Returns:
821
822
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
823
        """
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

850
        if order == 1:
851
            return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample)
852
        elif order == 2:
853
            return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample)
854
        elif order == 3:
855
            return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample)
856
857
858
        else:
            raise ValueError(f"Order must be 1, 2, 3, got {order}")

859
860
861
862
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
863

864
        index_candidates = (schedule_timesteps == timestep).nonzero()
865
866
867
868
869
870
871
872
873
874
875
876

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

877
878
879
880
881
882
883
884
885
886
887
888
889
890
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
891

892
893
894
895
896
897
898
899
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
900
901
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the singlestep DPMSolver.
902
903

        Args:
904
905
906
907
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
908
            sample (`torch.FloatTensor`):
909
910
911
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
912
913

        Returns:
914
915
916
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
917
918
919
920
921
922
923

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

924
925
        if self.step_index is None:
            self._init_step_index(timestep)
926

927
        model_output = self.convert_model_output(model_output, sample=sample)
928
929
930
931
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

932
        order = self.order_list[self.step_index]
Patrick von Platen's avatar
Patrick von Platen committed
933
934
935
936
937
938

        #  For img2img denoising might start with order>1 which is not possible
        #  In this case make sure that the first two steps are both order=1
        while self.model_outputs[-order] is None:
            order -= 1

939
940
941
942
        # For single-step solvers, we use the initial value at each time with order = 1.
        if order == 1:
            self.sample = sample

943
944
945
946
        prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order)

        # upon completion increase step index by one
        self._step_index += 1
947
948
949
950
951
952
953
954
955
956
957
958

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
959
960
            sample (`torch.FloatTensor`):
                The input sample.
961
962

        Returns:
963
964
            `torch.FloatTensor`:
                A scaled input sample.
965
966
967
        """
        return sample

968
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
969
970
971
972
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
973
        timesteps: torch.IntTensor,
974
    ) -> torch.FloatTensor:
975
976
977
978
979
980
981
982
983
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
984

985
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
986
987
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
988
989
990
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
991
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
992
            # add noise is called before first denoising step to create initial latent(img2img)
993
            step_indices = [self.begin_index] * timesteps.shape[0]
994

995
996
997
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
998

999
1000
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1001
1002
1003
1004
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps