scheduling_dpmsolver_singlestep.py 55.6 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
18
from typing import List, Literal, Optional, Tuple, Union
19
20
21
22
23

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, is_scipy_available, logging
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
if is_scipy_available():
    import scipy.stats

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


35
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
36
def betas_for_alpha_bar(
37
38
39
40
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
41
42
43
44
45
46
47
48
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
49
50
51
52
53
54
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
55
56

    Returns:
57
58
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
59
    """
YiYi Xu's avatar
YiYi Xu committed
60
    if alpha_transform_type == "cosine":
61

YiYi Xu's avatar
YiYi Xu committed
62
63
64
65
66
67
68
69
70
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
71
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
72
73
74
75
76

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
77
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
78
79
80
81
82
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
    """
83
    `DPMSolverSinglestepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
84

85
86
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
87
88

    Args:
89
90
91
92
93
94
95
96
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
97
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
98
99
100
101
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
102
            sampling, and `solver_order=3` for unconditional sampling.
103
104
105
106
107
108
109
110
111
112
113
114
115
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
116
117
118
119
120
            Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
            type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
            `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
            paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
            sampling like in Stable Diffusion.
121
122
123
124
125
126
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
127
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
128
129
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
130
131
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
132
133
134
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
135
        final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
136
137
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
138
139
140
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
141
        variance_type (`str`, *optional*):
142
143
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
144
145
    """

Kashif Rasul's avatar
Kashif Rasul committed
146
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
164
        lower_order_final: bool = False,
165
        use_karras_sigmas: Optional[bool] = False,
166
        use_exponential_sigmas: Optional[bool] = False,
167
        use_beta_sigmas: Optional[bool] = False,
168
169
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
170
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
171
172
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
173
174
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
175
    ):
176
177
178
179
180
181
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
182
183
184
185
        if algorithm_type == "dpmsolver":
            deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)

186
187
188
189
190
191
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
192
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
193
194
195
196
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
197
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
198
199
200
201
202
203
204

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
205
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
206
207
208
209
210

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
211
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]:
212
            if algorithm_type == "deis":
213
                self.register_to_config(algorithm_type="dpmsolver++")
214
            else:
215
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
216
        if solver_type not in ["midpoint", "heun"]:
217
            if solver_type in ["logrho", "bh1", "bh2"]:
218
                self.register_to_config(solver_type="midpoint")
219
            else:
220
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
221

222
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
223
            raise ValueError(
224
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
225
226
            )

227
228
229
230
231
232
233
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.sample = None
        self.order_list = self.get_order_list(num_train_timesteps)
234
        self._step_index = None
235
        self._begin_index = None
236
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
237
238
239
240
241
242
243

    def get_order_list(self, num_inference_steps: int) -> List[int]:
        """
        Computes the solver order at each time step.

        Args:
            num_inference_steps (`int`):
244
                The number of diffusion steps used when generating samples with a pre-trained model.
245
246
        """
        steps = num_inference_steps
247
        order = self.config.solver_order
248
249
        if order > 3:
            raise ValueError("Order > 3 is not supported by this scheduler")
250
        if self.config.lower_order_final:
251
252
253
254
255
256
257
258
259
            if order == 3:
                if steps % 3 == 0:
                    orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
                elif steps % 3 == 1:
                    orders = [1, 2, 3] * (steps // 3) + [1]
                else:
                    orders = [1, 2, 3] * (steps // 3) + [1, 2]
            elif order == 2:
                if steps % 2 == 0:
260
                    orders = [1, 2] * (steps // 2 - 1) + [1, 1]
261
262
263
264
265
266
267
268
269
270
271
                else:
                    orders = [1, 2] * (steps // 2) + [1]
            elif order == 1:
                orders = [1] * steps
        else:
            if order == 3:
                orders = [1, 2, 3] * (steps // 3)
            elif order == 2:
                orders = [1, 2] * (steps // 2)
            elif order == 1:
                orders = [1] * steps
StAlKeR7779's avatar
StAlKeR7779 committed
272
273
274
275

        if self.config.final_sigmas_type == "zero":
            orders[-1] = 1

276
277
        return orders

278
279
280
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
281
        The index counter for current timestep. It will increase 1 after each scheduler step.
282
283
284
        """
        return self._step_index

285
286
287
288
289
290
291
292
293
294
295
296
297
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
298
            begin_index (`int`, defaults to `0`):
299
300
301
302
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

303
304
305
306
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
307
        mu: Optional[float] = None,
308
309
        timesteps: Optional[List[int]] = None,
    ):
310
        """
311
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
312
313
314

        Args:
            num_inference_steps (`int`):
315
316
317
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
318
319
320
321
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
                passed, `num_inference_steps` must be `None`.
322
        """
323
324
325
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
326
327
328
329
330
331
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")
332
333
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
334
335
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
336
337

        num_inference_steps = num_inference_steps or len(timesteps)
338
        self.num_inference_steps = num_inference_steps
339
340
341
342
343
344
345

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
        else:
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
YiYi Xu's avatar
YiYi Xu committed
346
            clipped_idx = clipped_idx.item()
347
348
349
350
351
352
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
353

354
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
355
        log_sigmas = np.log(sigmas)
356
        if self.config.use_karras_sigmas:
357
            sigmas = np.flip(sigmas).copy()
358
359
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
360
        elif self.config.use_exponential_sigmas:
361
362
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
363
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
364
        elif self.config.use_beta_sigmas:
365
366
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
367
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
368
369
370
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
371
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
372
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
373
374
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
375
376

        if self.config.final_sigmas_type == "sigma_min":
377
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
378
379
380
381
382
383
384
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
            )
        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
385

386
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
387

388
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
389
390
        self.model_outputs = [None] * self.config.solver_order
        self.sample = None
Patrick von Platen's avatar
Patrick von Platen committed
391
392

        if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
393
            logger.warning(
394
                "Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
Patrick von Platen's avatar
Patrick von Platen committed
395
396
397
            )
            self.register_to_config(lower_order_final=True)

398
        if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
399
            logger.warning(
400
401
402
403
                " `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
            )
            self.register_to_config(lower_order_final=True)

Patrick von Platen's avatar
Patrick von Platen committed
404
        self.order_list = self.get_order_list(num_inference_steps)
405

406
407
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
408
        self._begin_index = None
409
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
410

411
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
412
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
413
        """
414
415
        Apply dynamic thresholding to the predicted sample.

416
417
418
419
420
421
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
422
        https://huggingface.co/papers/2205.11487
423
424
425
426
427
428
429
430

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
431
432
        """
        dtype = sample.dtype
433
        batch_size, channels, *remaining_dims = sample.shape
434
435
436
437
438

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
439
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
440
441
442
443
444
445
446
447
448
449

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

450
        sample = sample.reshape(batch_size, channels, *remaining_dims)
451
452
453
        sample = sample.to(dtype)

        return sample
454

455
456
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
457
458
459
460
461
462
463
464
465
466
467
468
469
        """
        Convert sigma values to corresponding timestep values through interpolation.

        Args:
            sigma (`np.ndarray`):
                The sigma value(s) to convert to timestep(s).
            log_sigmas (`np.ndarray`):
                The logarithm of the sigma schedule used for interpolation.

        Returns:
            `np.ndarray`:
                The interpolated timestep value(s) corresponding to the input sigma(s).
        """
470
        # get log sigma
471
        log_sigma = np.log(np.maximum(sigma, 1e-10))
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

492
493
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
494
495
496
497
498
499
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
500
501
502

        return alpha_t, sigma_t

503
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
504
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        """
        Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
        Models](https://huggingface.co/papers/2206.00364).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following the Karras noise schedule.
        """
519

Suraj Patil's avatar
Suraj Patil committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
534
535
536
537
538
539
540
541

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

542
543
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
544
545
546
547
548
549
550
551
552
553
554
555
556
        """
        Construct an exponential noise schedule.

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following an exponential schedule.
        """
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

573
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
574
575
        return sigmas

576
577
578
579
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        """
        Construct a beta noise schedule as proposed in [Beta Sampling is All You
        Need](https://huggingface.co/papers/2407.12173).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.
            alpha (`float`, *optional*, defaults to `0.6`):
                The alpha parameter for the beta distribution.
            beta (`float`, *optional*, defaults to `0.6`):
                The beta parameter for the beta distribution.

        Returns:
            `torch.Tensor`:
                The converted sigma values following a beta distribution schedule.
        """
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

614
        sigmas = np.array(
615
616
617
618
619
620
621
622
623
624
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

625
    def convert_model_output(
626
        self,
627
        model_output: torch.Tensor,
628
        *args,
629
        sample: torch.Tensor = None,
630
        **kwargs,
631
    ) -> torch.Tensor:
632
        """
633
634
635
636
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

Steven Liu's avatar
Steven Liu committed
637
638
        > [!TIP] > The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both
        noise > prediction and data prediction models.
639
640

        Args:
641
            model_output (`torch.Tensor`):
642
                The direct output from the learned diffusion model.
643
            sample (`torch.Tensor`):
644
                A current instance of a sample created by the diffusion process.
645
646

        Returns:
647
            `torch.Tensor`:
648
                The converted model output.
649
        """
650
651
652
653
654
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
655
                raise ValueError("missing `sample` as a required keyword argument")
656
657
658
659
660
661
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
662
        # DPM-Solver++ needs to solve an integral of the data prediction model.
663
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
664
            if self.config.prediction_type == "epsilon":
665
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
666
                if self.config.variance_type in ["learned", "learned_range"]:
667
                    model_output = model_output[:, :3]
668
669
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
670
671
672
673
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
674
675
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
676
                x0_pred = alpha_t * sample - sigma_t * model_output
677
678
679
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
680
681
            else:
                raise ValueError(
682
683
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the DPMSolverSinglestepScheduler."
684
685
686
                )

            if self.config.thresholding:
687
688
                x0_pred = self._threshold_sample(x0_pred)

689
            return x0_pred
690

691
692
693
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
            if self.config.prediction_type == "epsilon":
694
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
695
696
697
698
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
699
            elif self.config.prediction_type == "sample":
700
701
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
702
703
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
704
705
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
706
707
708
709
710
711
712
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

713
714
715
716
717
718
719
720
            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

721
722
    def dpm_solver_first_order_update(
        self,
723
        model_output: torch.Tensor,
724
        *args,
725
        sample: torch.Tensor = None,
726
        noise: Optional[torch.Tensor] = None,
727
        **kwargs,
728
    ) -> torch.Tensor:
729
        """
730
        One step for the first-order DPMSolver (equivalent to DDIM).
731
732

        Args:
733
            model_output (`torch.Tensor`):
734
735
736
737
738
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
739
            sample (`torch.Tensor`):
740
                A current instance of a sample created by the diffusion process.
741
742

        Returns:
743
            `torch.Tensor`:
744
                The sample tensor at the previous timestep.
745
        """
746
747
748
749
750
751
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
752
                raise ValueError("missing `sample` as a required keyword argument")
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
771
772
773
774
775
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
776
777
778
779
780
781
782
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
783
784
785
786
        return x_t

    def singlestep_dpm_solver_second_order_update(
        self,
787
        model_output_list: List[torch.Tensor],
788
        *args,
789
        sample: torch.Tensor = None,
790
        noise: Optional[torch.Tensor] = None,
791
        **kwargs,
792
    ) -> torch.Tensor:
793
        """
794
795
        One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-2]`.
796
797

        Args:
798
            model_output_list (`List[torch.Tensor]`):
799
800
801
802
803
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
804
            sample (`torch.Tensor`):
805
                A current instance of a sample created by the diffusion process.
806
807

        Returns:
808
            `torch.Tensor`:
809
                The sample tensor at the previous timestep.
810
        """
811
812
813
814
815
816
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
817
                raise ValueError("missing `sample` as a required keyword argument")
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

845
        m0, m1 = model_output_list[-1], model_output_list[-2]
846

847
848
849
850
        h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m1, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
851
            # See https://huggingface.co/papers/2211.01095 for detailed derivations
852
853
854
855
856
857
858
859
860
861
862
863
864
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
865
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
866
867
868
869
870
871
872
873
874
875
876
877
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
894
895
896
897
        return x_t

    def singlestep_dpm_solver_third_order_update(
        self,
898
        model_output_list: List[torch.Tensor],
899
        *args,
900
        sample: torch.Tensor = None,
StAlKeR7779's avatar
StAlKeR7779 committed
901
        noise: Optional[torch.Tensor] = None,
902
        **kwargs,
903
    ) -> torch.Tensor:
904
        """
905
906
        One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-3]`.
907
908

        Args:
909
            model_output_list (`List[torch.Tensor]`):
910
911
912
913
914
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
915
            sample (`torch.Tensor`):
916
                A current instance of a sample created by diffusion process.
917
918

        Returns:
919
            `torch.Tensor`:
920
                The sample tensor at the previous timestep.
921
        """
922
923
924
925
926
927
928

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
929
                raise ValueError("missing `sample` as a required keyword argument")
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
949
        )
950
951
952
953
954
955
956
957
958
959
960
961
962

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

963
964
965
966
967
968
969
        h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m2
        D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
        D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
        D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
970
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
971
972
973
974
975
976
977
978
979
980
981
982
983
984
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                    - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
985
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
986
987
988
989
990
991
992
993
994
995
996
997
998
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
                )
StAlKeR7779's avatar
StAlKeR7779 committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2 * torch.exp(-h)) * sample
                    + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1_1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2 * torch.exp(-h)) * sample
                    + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h) + (-2.0 * h)) / (-2.0 * h) ** 2 - 0.5)) * D2
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
1016
1017
1018
1019
        return x_t

    def singlestep_dpm_solver_update(
        self,
1020
        model_output_list: List[torch.Tensor],
1021
        *args,
1022
        sample: torch.Tensor = None,
1023
        order: int = None,
1024
        noise: Optional[torch.Tensor] = None,
1025
        **kwargs,
1026
    ) -> torch.Tensor:
1027
        """
1028
        One step for the singlestep DPMSolver.
1029
1030

        Args:
1031
            model_output_list (`List[torch.Tensor]`):
1032
1033
1034
1035
1036
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
1037
            sample (`torch.Tensor`):
1038
                A current instance of a sample created by diffusion process.
1039
            order (`int`):
1040
                The solver order at this step.
1041
1042

        Returns:
1043
            `torch.Tensor`:
1044
                The sample tensor at the previous timestep.
1045
        """
1046
1047
1048
1049
1050
1051
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
1052
                raise ValueError("missing `sample` as a required keyword argument")
1053
1054
1055
1056
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
1057
                raise ValueError("missing `order` as a required keyword argument")
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

1072
        if order == 1:
1073
            return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise)
1074
        elif order == 2:
1075
            return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
1076
        elif order == 3:
StAlKeR7779's avatar
StAlKeR7779 committed
1077
            return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample, noise=noise)
1078
1079
1080
        else:
            raise ValueError(f"Order must be 1, 2, 3, got {order}")

1081
1082
1083
1084
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
1085

1086
        index_candidates = (schedule_timesteps == timestep).nonzero()
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
1113

1114
1115
    def step(
        self,
1116
        model_output: torch.Tensor,
1117
        timestep: Union[int, torch.Tensor],
1118
        sample: torch.Tensor,
1119
        generator=None,
1120
1121
1122
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
1123
1124
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the singlestep DPMSolver.
1125
1126

        Args:
1127
            model_output (`torch.Tensor`):
1128
1129
1130
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1131
            sample (`torch.Tensor`):
1132
1133
1134
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
1135
1136

        Returns:
1137
1138
1139
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
1140
1141
1142
1143
1144
1145
1146

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

1147
1148
        if self.step_index is None:
            self._init_step_index(timestep)
1149

1150
        model_output = self.convert_model_output(model_output, sample=sample)
1151
1152
1153
1154
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

1155
1156
1157
1158
1159
1160
1161
        if self.config.algorithm_type == "sde-dpmsolver++":
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

1162
        order = self.order_list[self.step_index]
Patrick von Platen's avatar
Patrick von Platen committed
1163
1164
1165
1166
1167
1168

        #  For img2img denoising might start with order>1 which is not possible
        #  In this case make sure that the first two steps are both order=1
        while self.model_outputs[-order] is None:
            order -= 1

1169
1170
1171
1172
        # For single-step solvers, we use the initial value at each time with order = 1.
        if order == 1:
            self.sample = sample

1173
1174
1175
        prev_sample = self.singlestep_dpm_solver_update(
            self.model_outputs, sample=self.sample, order=order, noise=noise
        )
1176

1177
        # upon completion increase step index by one, noise=noise
1178
        self._step_index += 1
1179
1180
1181
1182
1183
1184

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1185
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1186
1187
1188
1189
1190
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1191
            sample (`torch.Tensor`):
1192
                The input sample.
1193
1194

        Returns:
1195
            `torch.Tensor`:
1196
                A scaled input sample.
1197
1198
1199
        """
        return sample

1200
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1201
1202
    def add_noise(
        self,
1203
1204
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1205
        timesteps: torch.IntTensor,
1206
    ) -> torch.Tensor:
1207
1208
1209
1210
1211
1212
1213
1214
1215
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1216

1217
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1218
1219
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1220
1221
1222
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1223
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1224
            # add noise is called before first denoising step to create initial latent(img2img)
1225
            step_indices = [self.begin_index] * timesteps.shape[0]
1226

1227
1228
1229
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1230

1231
1232
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1233
1234
1235
1236
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps