Unverified Commit c25582d5 authored by David El Malih's avatar David El Malih Committed by GitHub
Browse files

[Docs] Update Imagen Video paper link in schedulers (#12724)

docs: Update Imagen Video paper link in scheduler docstrings.
parent 6156cf8f
...@@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): ...@@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `v_prediction`, *optional*): prediction_type (`str`, defaults to `v_prediction`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
solver_type (`str`, defaults to `midpoint`): solver_type (`str`, defaults to `midpoint`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
......
...@@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin): ...@@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
...@@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): ...@@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"leading"`): timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
......
...@@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin): ...@@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional): prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf) https://huggingface.co/papers/2210.02303)
thresholding (`bool`, default `False`): thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen, whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
......
...@@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin): ...@@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`): prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
...@@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin): ...@@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional): prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf) https://huggingface.co/papers/2210.02303)
thresholding (`bool`, default `False`): thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen, whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
......
...@@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin): ...@@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`): prediction_type (`str`, defaults to `epsilon`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
...@@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin): ...@@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
...@@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin): ...@@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
...@@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin): ...@@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
use_karras_sigmas (`bool`, *optional*, defaults to `False`): use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}. the sigmas are determined according to a sequence of noise levels {σi}.
......
...@@ -103,7 +103,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin): ...@@ -103,7 +103,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
...@@ -57,7 +57,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): ...@@ -57,7 +57,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
...@@ -74,7 +74,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin): ...@@ -74,7 +74,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
rho (`float`, *optional*, defaults to 7.0): rho (`float`, *optional*, defaults to 7.0):
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1]. The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
final_sigmas_type (`str`, defaults to `"zero"`): final_sigmas_type (`str`, defaults to `"zero"`):
......
...@@ -152,7 +152,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -152,7 +152,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"linspace"`): timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
......
...@@ -155,7 +155,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -155,7 +155,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`, *optional*): prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`, *optional*):
Prediction type of the scheduler function; can be `"epsilon"` (predicts the noise of the diffusion Prediction type of the scheduler function; can be `"epsilon"` (predicts the noise of the diffusion
process), `"sample"` (directly predicts the noisy sample`) or `"v_prediction"` (see section 2.4 of [Imagen process), `"sample"` (directly predicts the noisy sample`) or `"v_prediction"` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
interpolation_type (`Literal["linear", "log_linear"]`, defaults to `"linear"`, *optional*): interpolation_type (`Literal["linear", "log_linear"]`, defaults to `"linear"`, *optional*):
The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of
`"linear"` or `"log_linear"`. `"linear"` or `"log_linear"`.
......
...@@ -74,7 +74,7 @@ class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): ...@@ -74,7 +74,7 @@ class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional): prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf) https://huggingface.co/papers/2210.02303)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation. the `dtype` used for params and computation.
""" """
......
...@@ -115,7 +115,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -115,7 +115,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
clip_sample (`bool`, defaults to `True`): clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability. Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0): clip_sample_range (`float`, defaults to 1.0):
......
...@@ -125,7 +125,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -125,7 +125,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"linspace"`): timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
......
...@@ -124,7 +124,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -124,7 +124,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
timestep_spacing (`str`, defaults to `"linspace"`): timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
......
...@@ -170,7 +170,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin): ...@@ -170,7 +170,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*): prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper). Video](https://huggingface.co/papers/2210.02303) paper).
thresholding (`bool`, defaults to `False`): thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion. as Stable Diffusion.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment