Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
c25582d5
Unverified
Commit
c25582d5
authored
Dec 01, 2025
by
David El Malih
Committed by
GitHub
Dec 01, 2025
Browse files
[Docs] Update Imagen Video paper link in schedulers (#12724)
docs: Update Imagen Video paper link in scheduler docstrings.
parent
6156cf8f
Changes
26
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
20 additions
and
20 deletions
+20
-20
src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py
...users/schedulers/scheduling_cosine_dpmsolver_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_ddim_cogvideox.py
src/diffusers/schedulers/scheduling_ddim_cogvideox.py
+1
-1
src/diffusers/schedulers/scheduling_ddim_inverse.py
src/diffusers/schedulers/scheduling_ddim_inverse.py
+1
-1
src/diffusers/schedulers/scheduling_ddim_parallel.py
src/diffusers/schedulers/scheduling_ddim_parallel.py
+1
-1
src/diffusers/schedulers/scheduling_ddpm.py
src/diffusers/schedulers/scheduling_ddpm.py
+1
-1
src/diffusers/schedulers/scheduling_ddpm_parallel.py
src/diffusers/schedulers/scheduling_ddpm_parallel.py
+1
-1
src/diffusers/schedulers/scheduling_deis_multistep.py
src/diffusers/schedulers/scheduling_deis_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_dpm_cogvideox.py
src/diffusers/schedulers/scheduling_dpm_cogvideox.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
...sers/schedulers/scheduling_dpmsolver_multistep_inverse.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
+1
-1
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
+1
-1
src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
...iffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
+1
-1
src/diffusers/schedulers/scheduling_edm_euler.py
src/diffusers/schedulers/scheduling_edm_euler.py
+1
-1
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
...ffusers/schedulers/scheduling_euler_ancestral_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_euler_discrete.py
src/diffusers/schedulers/scheduling_euler_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_euler_discrete_flax.py
src/diffusers/schedulers/scheduling_euler_discrete_flax.py
+1
-1
src/diffusers/schedulers/scheduling_heun_discrete.py
src/diffusers/schedulers/scheduling_heun_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
...users/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
+1
-1
src/diffusers/schedulers/scheduling_lcm.py
src/diffusers/schedulers/scheduling_lcm.py
+1
-1
No files found.
src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py
View file @
c25582d5
...
@@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
...
@@ -53,7 +53,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `v_prediction`, *optional*):
prediction_type (`str`, defaults to `v_prediction`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
solver_type (`str`, defaults to `midpoint`):
solver_type (`str`, defaults to `midpoint`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
...
...
src/diffusers/schedulers/scheduling_ddim_cogvideox.py
View file @
c25582d5
...
@@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -157,7 +157,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_ddim_inverse.py
View file @
c25582d5
...
@@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
...
@@ -160,7 +160,7 @@ class DDIMInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"leading"`):
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_ddim_parallel.py
View file @
c25582d5
...
@@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
...
@@ -164,7 +164,7 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://
imagen.research.google/video/paper.pdf
)
https://
huggingface.co/papers/2210.02303
)
thresholding (`bool`, default `False`):
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen,
whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
...
...
src/diffusers/schedulers/scheduling_ddpm.py
View file @
c25582d5
...
@@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -154,7 +154,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_ddpm_parallel.py
View file @
c25582d5
...
@@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
...
@@ -160,7 +160,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://
imagen.research.google/video/paper.pdf
)
https://
huggingface.co/papers/2210.02303
)
thresholding (`bool`, default `False`):
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen,
whether to use the "dynamic thresholding" method (introduced by Imagen,
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
https://huggingface.co/papers/2205.11487). Note that the thresholding method is unsuitable for latent-space
...
...
src/diffusers/schedulers/scheduling_deis_multistep.py
View file @
c25582d5
...
@@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
...
@@ -101,7 +101,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`):
prediction_type (`str`, defaults to `epsilon`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_dpm_cogvideox.py
View file @
c25582d5
...
@@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -158,7 +158,7 @@ class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
View file @
c25582d5
...
@@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
...
@@ -101,7 +101,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_dpmsolver_sde.py
View file @
c25582d5
...
@@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
...
@@ -182,7 +182,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
the sigmas are determined according to a sequence of noise levels {σi}.
...
...
src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
View file @
c25582d5
...
@@ -103,7 +103,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
...
@@ -103,7 +103,7 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py
View file @
c25582d5
...
@@ -57,7 +57,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
...
@@ -57,7 +57,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
src/diffusers/schedulers/scheduling_edm_euler.py
View file @
c25582d5
...
@@ -74,7 +74,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
...
@@ -74,7 +74,7 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
rho (`float`, *optional*, defaults to 7.0):
rho (`float`, *optional*, defaults to 7.0):
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
final_sigmas_type (`str`, defaults to `"zero"`):
final_sigmas_type (`str`, defaults to `"zero"`):
...
...
src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
View file @
c25582d5
...
@@ -152,7 +152,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
...
@@ -152,7 +152,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_euler_discrete.py
View file @
c25582d5
...
@@ -155,7 +155,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
...
@@ -155,7 +155,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`, *optional*):
prediction_type (`Literal["epsilon", "sample", "v_prediction"]`, defaults to `"epsilon"`, *optional*):
Prediction type of the scheduler function; can be `"epsilon"` (predicts the noise of the diffusion
Prediction type of the scheduler function; can be `"epsilon"` (predicts the noise of the diffusion
process), `"sample"` (directly predicts the noisy sample`) or `"v_prediction"` (see section 2.4 of [Imagen
process), `"sample"` (directly predicts the noisy sample`) or `"v_prediction"` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
interpolation_type (`Literal["linear", "log_linear"]`, defaults to `"linear"`, *optional*):
interpolation_type (`Literal["linear", "log_linear"]`, defaults to `"linear"`, *optional*):
The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of
The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of
`"linear"` or `"log_linear"`.
`"linear"` or `"log_linear"`.
...
...
src/diffusers/schedulers/scheduling_euler_discrete_flax.py
View file @
c25582d5
...
@@ -74,7 +74,7 @@ class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
...
@@ -74,7 +74,7 @@ class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
prediction_type (`str`, default `epsilon`, optional):
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://
imagen.research.google/video/paper.pdf
)
https://
huggingface.co/papers/2210.02303
)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation.
the `dtype` used for params and computation.
"""
"""
...
...
src/diffusers/schedulers/scheduling_heun_discrete.py
View file @
c25582d5
...
@@ -115,7 +115,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
...
@@ -115,7 +115,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
clip_sample (`bool`, defaults to `True`):
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
clip_sample_range (`float`, defaults to 1.0):
...
...
src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
View file @
c25582d5
...
@@ -125,7 +125,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
...
@@ -125,7 +125,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
View file @
c25582d5
...
@@ -124,7 +124,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
...
@@ -124,7 +124,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
...
...
src/diffusers/schedulers/scheduling_lcm.py
View file @
c25582d5
...
@@ -170,7 +170,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -170,7 +170,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
prediction_type (`str`, defaults to `epsilon`, *optional*):
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://
imagen.research.google/video/paper.pdf
) paper).
Video](https://
huggingface.co/papers/2210.02303
) paper).
thresholding (`bool`, defaults to `False`):
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
as Stable Diffusion.
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment