scheduling_ddpm.py 16.8 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
25
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
102
103
104
        prediction_type (`str`, default `epsilon`):
            indicates whether the model predicts the noise (epsilon), or the samples. One of `epsilon`, `sample`.
            `v-prediction` is not supported for this scheduler.
105
106
    """

107
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
108
    _deprecated_kwargs = ["predict_epsilon"]
109
    order = 1
110

111
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
112
113
    def __init__(
        self,
Partho's avatar
Partho committed
114
115
116
117
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
118
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
119
120
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
121
122
        prediction_type: str = "epsilon",
        **kwargs,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
123
    ):
124
125
126
127
        message = (
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDPMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
        )
128
        predict_epsilon = deprecate("predict_epsilon", "0.11.0", message, take_from=kwargs)
129
130
131
        if predict_epsilon is not None:
            self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")

132
        if trained_betas is not None:
133
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
134
        elif beta_schedule == "linear":
135
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
136
137
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
138
139
140
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
141
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
142
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
143
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
144
145
146
147
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
148
149
150
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
151
        self.alphas = 1.0 - self.betas
152
153
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
154

155
156
157
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

158
159
        # setable values
        self.num_inference_steps = None
160
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
161

162
163
        self.variance_type = variance_type

164
165
166
167
168
169
170
171
172
173
174
175
176
177
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

178
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
179
180
181
182
183
184
185
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
186
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
187
        self.num_inference_steps = num_inference_steps
188
        timesteps = np.arange(
189
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
190
191
        )[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
192

193
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
194
195
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
196

Kashif Rasul's avatar
Kashif Rasul committed
197
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
198
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
199
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
200
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
201

202
203
204
        if variance_type is None:
            variance_type = self.config.variance_type

205
        # hacks - were probably added for training stability
206
        if variance_type == "fixed_small":
207
            variance = torch.clamp(variance, min=1e-20)
208
        # for rl-diffuser https://arxiv.org/abs/2205.09991
209
        elif variance_type == "fixed_small_log":
210
            variance = torch.log(torch.clamp(variance, min=1e-20))
211
            variance = torch.exp(0.5 * variance)
212
        elif variance_type == "fixed_large":
213
            variance = self.betas[t]
214
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
215
            # Glide max_log
216
            variance = torch.log(self.betas[t])
217
218
219
220
221
222
223
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
224
225
226

        return variance

227
228
    def step(
        self,
229
        model_output: torch.FloatTensor,
230
        timestep: int,
231
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
232
        generator=None,
233
        return_dict: bool = True,
234
        **kwargs,
235
    ) -> Union[DDPMSchedulerOutput, Tuple]:
236
237
238
239
240
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
241
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
242
            timestep (`int`): current discrete timestep in the diffusion chain.
243
            sample (`torch.FloatTensor`):
244
245
                current instance of sample being created by diffusion process.
            generator: random number generator.
246
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
247
248

        Returns:
249
250
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
251
            returning a tuple, the first element is the sample tensor.
252
253

        """
254
        message = (
255
256
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDPMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
257
        )
258
        predict_epsilon = deprecate("predict_epsilon", "0.11.0", message, take_from=kwargs)
259
        if predict_epsilon is not None:
260
            new_config = dict(self.config)
261
            new_config["prediction_type"] = "epsilon" if predict_epsilon else "sample"
262
263
            self._internal_dict = FrozenDict(new_config)

264
        t = timestep
265

266
267
268
269
270
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
271
        # 1. compute alphas, betas
272
273
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

277
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
278
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
279
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
280
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
281
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
282
            pred_original_sample = model_output
283
284
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
285
286
        else:
            raise ValueError(
287
288
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
289
            )
Patrick von Platen's avatar
Patrick von Platen committed
290
291

        # 3. Clip "predicted x_0"
292
        if self.config.clip_sample:
293
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
294

295
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
296
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
297
298
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
299

300
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
301
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
302
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
303

Patrick von Platen's avatar
Patrick von Platen committed
304
305
306
        # 6. Add noise
        variance = 0
        if t > 0:
307
308
309
310
311
312
313
314
315
            device = model_output.device
            if device.type == "mps":
                # randn does not work reproducibly on mps
                variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                variance_noise = variance_noise.to(device)
            else:
                variance_noise = torch.randn(
                    model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                )
316
317
318
319
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
320
321
322

        pred_prev_sample = pred_prev_sample + variance

323
324
325
        if not return_dict:
            return (pred_prev_sample,)

326
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
327

Partho's avatar
Partho committed
328
329
    def add_noise(
        self,
330
331
332
333
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
334
335
336
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
337

anton-l's avatar
anton-l committed
338
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
339
340
341
342
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
343
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
344
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
345
346
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
347
348

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
349
        return noisy_samples
anton-l's avatar
anton-l committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
371
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
372
        return self.config.num_train_timesteps