modeling_utils.py 84.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import itertools
20
import json
21
import os
22
import re
23
24
import shutil
import tempfile
25
from collections import OrderedDict
26
from contextlib import ExitStack, contextmanager
27
from functools import wraps
28
from pathlib import Path
29
from typing import Any, Callable, ContextManager, Dict, List, Optional, Tuple, Type, Union
30

31
import safetensors
32
import torch
33
import torch.utils.checkpoint
Marc Sun's avatar
Marc Sun committed
34
from huggingface_hub import DDUFEntry, create_repo, split_torch_state_dict_into_shards
35
from huggingface_hub.utils import validate_hf_hub_args
36
from torch import Tensor, nn
37
from typing_extensions import Self
38

39
from .. import __version__
40
41
from ..quantizers import DiffusersAutoQuantizer, DiffusersQuantizer
from ..quantizers.quantization_config import QuantizationMethod
42
from ..utils import (
43
    CONFIG_NAME,
44
    FLAX_WEIGHTS_NAME,
45
    SAFE_WEIGHTS_INDEX_NAME,
46
    SAFETENSORS_WEIGHTS_NAME,
47
    WEIGHTS_INDEX_NAME,
48
    WEIGHTS_NAME,
49
    _add_variant,
50
    _get_checkpoint_shard_files,
51
    _get_model_file,
52
    deprecate,
53
    is_accelerate_available,
54
55
    is_bitsandbytes_available,
    is_bitsandbytes_version,
Aryan's avatar
Aryan committed
56
    is_peft_available,
57
58
59
    is_torch_version,
    logging,
)
60
61
62
63
64
from ..utils.hub_utils import (
    PushToHubMixin,
    load_or_create_model_card,
    populate_model_card,
)
65
from ..utils.torch_utils import empty_device_cache
66
from .model_loading_utils import (
67
    _caching_allocator_warmup,
68
    _determine_device_map,
69
    _expand_device_map,
70
    _fetch_index_file,
71
    _fetch_index_file_legacy,
72
    _find_mismatched_keys,
73
74
75
76
    _load_state_dict_into_model,
    load_model_dict_into_meta,
    load_state_dict,
)
77
78


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
class ContextManagers:
    """
    Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers`
    in the `fastcore` library.
    """

    def __init__(self, context_managers: List[ContextManager]):
        self.context_managers = context_managers
        self.stack = ExitStack()

    def __enter__(self):
        for context_manager in self.context_managers:
            self.stack.enter_context(context_manager)

    def __exit__(self, *args, **kwargs):
        self.stack.__exit__(*args, **kwargs)


97
98
logger = logging.get_logger(__name__)

99
100
_REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}")

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
TORCH_INIT_FUNCTIONS = {
    "uniform_": nn.init.uniform_,
    "normal_": nn.init.normal_,
    "trunc_normal_": nn.init.trunc_normal_,
    "constant_": nn.init.constant_,
    "xavier_uniform_": nn.init.xavier_uniform_,
    "xavier_normal_": nn.init.xavier_normal_,
    "kaiming_uniform_": nn.init.kaiming_uniform_,
    "kaiming_normal_": nn.init.kaiming_normal_,
    "uniform": nn.init.uniform,
    "normal": nn.init.normal,
    "xavier_uniform": nn.init.xavier_uniform,
    "xavier_normal": nn.init.xavier_normal,
    "kaiming_uniform": nn.init.kaiming_uniform,
    "kaiming_normal": nn.init.kaiming_normal,
}
117

118
119
120
121
122
123
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


124
125
if is_accelerate_available():
    import accelerate
126
127
    from accelerate import dispatch_model
    from accelerate.utils import load_offloaded_weights, save_offload_index
128
129


130
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
Aryan's avatar
Aryan committed
131
132
133
134
135
136
137
138
    from ..hooks.group_offloading import _get_group_onload_device

    try:
        # Try to get the onload device from the group offloading hook
        return _get_group_onload_device(parameter)
    except ValueError:
        pass

139
    try:
Aryan's avatar
Aryan committed
140
141
        # If the onload device is not available due to no group offloading hooks, try to get the device
        # from the first parameter or buffer
Patrick von Platen's avatar
Patrick von Platen committed
142
143
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
144
145
146
147
148
149
150
151
152
153
154
155
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


156
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
157
158
159
    """
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
    """
Aryan's avatar
Aryan committed
160
161
162
163
164
165
166
167
168
169
170
    # 1. Check if we have attached any dtype modifying hooks (eg. layerwise casting)
    if isinstance(parameter, nn.Module):
        for name, submodule in parameter.named_modules():
            if not hasattr(submodule, "_diffusers_hook"):
                continue
            registry = submodule._diffusers_hook
            hook = registry.get_hook("layerwise_casting")
            if hook is not None:
                return hook.compute_dtype

    # 2. If no dtype modifying hooks are attached, return the dtype of the first floating point parameter/buffer
171
    last_dtype = None
172
173

    for name, param in parameter.named_parameters():
174
        last_dtype = param.dtype
175
176
177
        if parameter._keep_in_fp32_modules and any(m in name for m in parameter._keep_in_fp32_modules):
            continue

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        if param.is_floating_point():
            return param.dtype

    for buffer in parameter.buffers():
        last_dtype = buffer.dtype
        if buffer.is_floating_point():
            return buffer.dtype

    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype

    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
        # fallback to the last dtype
        return last_tuple[1].dtype
205
206


207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def check_support_param_buffer_assignment(model_to_load, state_dict, start_prefix=""):
    """
    Checks if `model_to_load` supports param buffer assignment (such as when loading in empty weights) by first
    checking if the model explicitly disables it, then by ensuring that the state dict keys are a subset of the model's
    parameters.

    """
    if model_to_load.device.type == "meta":
        return False

    if len([key for key in state_dict if key.startswith(start_prefix)]) == 0:
        return False

    # Some models explicitly do not support param buffer assignment
    if not getattr(model_to_load, "_supports_param_buffer_assignment", True):
        logger.debug(
            f"{model_to_load.__class__.__name__} does not support param buffer assignment, loading will be slower"
        )
        return False

    # If the model does, the incoming `state_dict` and the `model_to_load` must be the same dtype
    first_key = next(iter(model_to_load.state_dict().keys()))
    if start_prefix + first_key in state_dict:
        return state_dict[start_prefix + first_key].dtype == model_to_load.state_dict()[first_key].dtype

    return False


@contextmanager
def no_init_weights():
    """
    Context manager to globally disable weight initialization to speed up loading large models. To do that, all the
    torch.nn.init function are all replaced with skip.
    """

    def _skip_init(*args, **kwargs):
        pass

    for name, init_func in TORCH_INIT_FUNCTIONS.items():
        setattr(torch.nn.init, name, _skip_init)
    try:
        yield
    finally:
        # Restore the original initialization functions
        for name, init_func in TORCH_INIT_FUNCTIONS.items():
            setattr(torch.nn.init, name, init_func)


255
class ModelMixin(torch.nn.Module, PushToHubMixin):
256
257
258
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
259
260
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
261

Steven Liu's avatar
Steven Liu committed
262
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
263
    """
264

265
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
266
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
267
    _supports_gradient_checkpointing = False
268
    _keys_to_ignore_on_load_unexpected = None
269
    _no_split_modules = None
270
    _keep_in_fp32_modules = None
Aryan's avatar
Aryan committed
271
    _skip_layerwise_casting_patterns = None
Aryan's avatar
Aryan committed
272
    _supports_group_offloading = True
273
    _repeated_blocks = []
274

275
    def __init__(self):
276
277
        super().__init__()

278
279
        self._gradient_checkpointing_func = None

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

298
299
300
301
302
303
304
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

305
    def enable_gradient_checkpointing(self, gradient_checkpointing_func: Optional[Callable] = None) -> None:
306
        """
Steven Liu's avatar
Steven Liu committed
307
308
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
309
310
311
312
313

        Args:
            gradient_checkpointing_func (`Callable`, *optional*):
                The function to use for gradient checkpointing. If `None`, the default PyTorch checkpointing function
                is used (`torch.utils.checkpoint.checkpoint`).
314
315
        """
        if not self._supports_gradient_checkpointing:
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
            raise ValueError(
                f"{self.__class__.__name__} does not support gradient checkpointing. Please make sure to set the boolean attribute "
                f"`_supports_gradient_checkpointing` to `True` in the class definition."
            )

        if gradient_checkpointing_func is None:

            def _gradient_checkpointing_func(module, *args):
                ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                return torch.utils.checkpoint.checkpoint(
                    module.__call__,
                    *args,
                    **ckpt_kwargs,
                )

            gradient_checkpointing_func = _gradient_checkpointing_func

        self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
334

335
    def disable_gradient_checkpointing(self) -> None:
336
        """
Steven Liu's avatar
Steven Liu committed
337
338
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
339
340
        """
        if self._supports_gradient_checkpointing:
341
            self._set_gradient_checkpointing(enable=False)
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    def set_use_npu_flash_attention(self, valid: bool) -> None:
        r"""
        Set the switch for the npu flash attention.
        """

        def fn_recursive_set_npu_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_npu_flash_attention"):
                module.set_use_npu_flash_attention(valid)

            for child in module.children():
                fn_recursive_set_npu_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_npu_flash_attention(module)

    def enable_npu_flash_attention(self) -> None:
        r"""
        Enable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(True)

    def disable_npu_flash_attention(self) -> None:
        r"""
        disable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(False)

Juan Acevedo's avatar
Juan Acevedo committed
373
    def set_use_xla_flash_attention(
374
        self, use_xla_flash_attention: bool, partition_spec: Optional[Callable] = None, **kwargs
Juan Acevedo's avatar
Juan Acevedo committed
375
376
377
378
379
380
    ) -> None:
        # Recursively walk through all the children.
        # Any children which exposes the set_use_xla_flash_attention method
        # gets the message
        def fn_recursive_set_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_xla_flash_attention"):
381
                module.set_use_xla_flash_attention(use_xla_flash_attention, partition_spec, **kwargs)
Juan Acevedo's avatar
Juan Acevedo committed
382
383
384
385
386
387
388
389

            for child in module.children():
                fn_recursive_set_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_flash_attention(module)

390
    def enable_xla_flash_attention(self, partition_spec: Optional[Callable] = None, **kwargs):
Juan Acevedo's avatar
Juan Acevedo committed
391
392
393
        r"""
        Enable the flash attention pallals kernel for torch_xla.
        """
394
        self.set_use_xla_flash_attention(True, partition_spec, **kwargs)
Juan Acevedo's avatar
Juan Acevedo committed
395
396
397
398
399
400
401

    def disable_xla_flash_attention(self):
        r"""
        Disable the flash attention pallals kernel for torch_xla.
        """
        self.set_use_xla_flash_attention(False)

402
403
404
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
405
406
407
408
409
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
410
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
411
412
413
414
415
416
417
418

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

419
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
420
        r"""
Steven Liu's avatar
Steven Liu committed
421
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
422

Steven Liu's avatar
Steven Liu committed
423
424
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
425

Steven Liu's avatar
Steven Liu committed
426
427
428
429
430
431
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
452
        """
453
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
454

455
    def disable_xformers_memory_efficient_attention(self) -> None:
456
        r"""
Steven Liu's avatar
Steven Liu committed
457
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
458
459
460
        """
        self.set_use_memory_efficient_attention_xformers(False)

Aryan's avatar
Aryan committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    def enable_layerwise_casting(
        self,
        storage_dtype: torch.dtype = torch.float8_e4m3fn,
        compute_dtype: Optional[torch.dtype] = None,
        skip_modules_pattern: Optional[Tuple[str, ...]] = None,
        skip_modules_classes: Optional[Tuple[Type[torch.nn.Module], ...]] = None,
        non_blocking: bool = False,
    ) -> None:
        r"""
        Activates layerwise casting for the current model.

        Layerwise casting is a technique that casts the model weights to a lower precision dtype for storage but
        upcasts them on-the-fly to a higher precision dtype for computation. This process can significantly reduce the
        memory footprint from model weights, but may lead to some quality degradation in the outputs. Most degradations
        are negligible, mostly stemming from weight casting in normalization and modulation layers.

        By default, most models in diffusers set the `_skip_layerwise_casting_patterns` attribute to ignore patch
        embedding, positional embedding and normalization layers. This is because these layers are most likely
        precision-critical for quality. If you wish to change this behavior, you can set the
        `_skip_layerwise_casting_patterns` attribute to `None`, or call
        [`~hooks.layerwise_casting.apply_layerwise_casting`] with custom arguments.

        Example:
            Using [`~models.ModelMixin.enable_layerwise_casting`]:

            ```python
            >>> from diffusers import CogVideoXTransformer3DModel

            >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
            ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
            ... )

            >>> # Enable layerwise casting via the model, which ignores certain modules by default
            >>> transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
            ```

        Args:
            storage_dtype (`torch.dtype`):
                The dtype to which the model should be cast for storage.
            compute_dtype (`torch.dtype`):
                The dtype to which the model weights should be cast during the forward pass.
            skip_modules_pattern (`Tuple[str, ...]`, *optional*):
                A list of patterns to match the names of the modules to skip during the layerwise casting process. If
                set to `None`, default skip patterns are used to ignore certain internal layers of modules and PEFT
                layers.
            skip_modules_classes (`Tuple[Type[torch.nn.Module], ...]`, *optional*):
                A list of module classes to skip during the layerwise casting process.
            non_blocking (`bool`, *optional*, defaults to `False`):
                If `True`, the weight casting operations are non-blocking.
        """
Aryan's avatar
Aryan committed
511
        from ..hooks import apply_layerwise_casting
Aryan's avatar
Aryan committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

        user_provided_patterns = True
        if skip_modules_pattern is None:
            from ..hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN

            skip_modules_pattern = DEFAULT_SKIP_MODULES_PATTERN
            user_provided_patterns = False
        if self._keep_in_fp32_modules is not None:
            skip_modules_pattern += tuple(self._keep_in_fp32_modules)
        if self._skip_layerwise_casting_patterns is not None:
            skip_modules_pattern += tuple(self._skip_layerwise_casting_patterns)
        skip_modules_pattern = tuple(set(skip_modules_pattern))

        if is_peft_available() and not user_provided_patterns:
            # By default, we want to skip all peft layers because they have a very low memory footprint.
            # If users want to apply layerwise casting on peft layers as well, they can utilize the
            # `~diffusers.hooks.layerwise_casting.apply_layerwise_casting` function which provides
            # them with more flexibility and control.

            from peft.tuners.loha.layer import LoHaLayer
            from peft.tuners.lokr.layer import LoKrLayer
            from peft.tuners.lora.layer import LoraLayer

            for layer in (LoHaLayer, LoKrLayer, LoraLayer):
                skip_modules_pattern += tuple(layer.adapter_layer_names)

        if compute_dtype is None:
            logger.info("`compute_dtype` not provided when enabling layerwise casting. Using dtype of the model.")
            compute_dtype = self.dtype

        apply_layerwise_casting(
            self, storage_dtype, compute_dtype, skip_modules_pattern, skip_modules_classes, non_blocking
        )

Aryan's avatar
Aryan committed
546
547
548
549
550
551
552
553
    def enable_group_offload(
        self,
        onload_device: torch.device,
        offload_device: torch.device = torch.device("cpu"),
        offload_type: str = "block_level",
        num_blocks_per_group: Optional[int] = None,
        non_blocking: bool = False,
        use_stream: bool = False,
554
        record_stream: bool = False,
555
        low_cpu_mem_usage=False,
556
        offload_to_disk_path: Optional[str] = None,
Aryan's avatar
Aryan committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    ) -> None:
        r"""
        Activates group offloading for the current model.

        See [`~hooks.group_offloading.apply_group_offloading`] for more information.

        Example:

            ```python
            >>> from diffusers import CogVideoXTransformer3DModel

            >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
            ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
            ... )

            >>> transformer.enable_group_offload(
            ...     onload_device=torch.device("cuda"),
            ...     offload_device=torch.device("cpu"),
            ...     offload_type="leaf_level",
            ...     use_stream=True,
            ... )
            ```
        """
Aryan's avatar
Aryan committed
580
581
        from ..hooks import apply_group_offloading

Aryan's avatar
Aryan committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        if getattr(self, "enable_tiling", None) is not None and getattr(self, "use_tiling", False) and use_stream:
            msg = (
                "Applying group offloading on autoencoders, with CUDA streams, may not work as expected if the first "
                "forward pass is executed with tiling enabled. Please make sure to either:\n"
                "1. Run a forward pass with small input shapes.\n"
                "2. Or, run a forward pass with tiling disabled (can still use small dummy inputs)."
            )
            logger.warning(msg)
        if not self._supports_group_offloading:
            raise ValueError(
                f"{self.__class__.__name__} does not support group offloading. Please make sure to set the boolean attribute "
                f"`_supports_group_offloading` to `True` in the class definition. If you believe this is a mistake, please "
                f"open an issue at https://github.com/huggingface/diffusers/issues."
            )
        apply_group_offloading(
597
598
599
600
601
602
603
604
            module=self,
            onload_device=onload_device,
            offload_device=offload_device,
            offload_type=offload_type,
            num_blocks_per_group=num_blocks_per_group,
            non_blocking=non_blocking,
            use_stream=use_stream,
            record_stream=record_stream,
605
            low_cpu_mem_usage=low_cpu_mem_usage,
606
            offload_to_disk_path=offload_to_disk_path,
Aryan's avatar
Aryan committed
607
608
        )

609
610
611
612
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
613
        save_function: Optional[Callable] = None,
614
        safe_serialization: bool = True,
615
        variant: Optional[str] = None,
616
        max_shard_size: Union[int, str] = "10GB",
617
618
        push_to_hub: bool = False,
        **kwargs,
619
620
    ):
        """
Steven Liu's avatar
Steven Liu committed
621
622
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
623
624
625

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
626
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
627
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
628
629
630
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
631
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
632
633
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
634
                `DIFFUSERS_SAVE_MODE`.
635
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
636
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
637
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
638
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
639
            max_shard_size (`int` or `str`, defaults to `"10GB"`):
640
641
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
642
643
644
645
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
646
647
648
649
650
651
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
652
653
654
655
656
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

657
658
659
660
661
662
663
664
665
666
667
668
669
        hf_quantizer = getattr(self, "hf_quantizer", None)
        if hf_quantizer is not None:
            quantization_serializable = (
                hf_quantizer is not None
                and isinstance(hf_quantizer, DiffusersQuantizer)
                and hf_quantizer.is_serializable
            )
            if not quantization_serializable:
                raise ValueError(
                    f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                    " the logger on the traceback to understand the reason why the quantized model is not serializable."
                )

670
671
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
        weights_name = _add_variant(weights_name, variant)
672
673
674
        weights_name_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(
            ".safetensors", "{suffix}.safetensors"
        )
675

676
677
        os.makedirs(save_directory, exist_ok=True)

678
679
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
680
            private = kwargs.pop("private", None)
681
682
683
684
685
686
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
687
688
689
690
691
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
692
            model_to_save.save_config(save_directory)
693
694
695
696
697

        # Save the model
        state_dict = model_to_save.state_dict()

        # Save the model
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
        state_dict_split = split_torch_state_dict_into_shards(
            state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern
        )

        # Clean the folder from a previous save
        if is_main_process:
            for filename in os.listdir(save_directory):
                if filename in state_dict_split.filename_to_tensors.keys():
                    continue
                full_filename = os.path.join(save_directory, filename)
                if not os.path.isfile(full_filename):
                    continue
                weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "")
                weights_without_ext = weights_without_ext.replace("{suffix}", "")
                filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "")
                # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
                if (
                    filename.startswith(weights_without_ext)
                    and _REGEX_SHARD.fullmatch(filename_without_ext) is not None
                ):
                    os.remove(full_filename)

        for filename, tensors in state_dict_split.filename_to_tensors.items():
721
            shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
722
723
724
725
            filepath = os.path.join(save_directory, filename)
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
726
                safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"})
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
            else:
                torch.save(shard, filepath)

        if state_dict_split.is_sharded:
            index = {
                "metadata": state_dict_split.metadata,
                "weight_map": state_dict_split.tensor_to_filename,
            }
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
745
746
            )
        else:
747
748
            path_to_weights = os.path.join(save_directory, weights_name)
            logger.info(f"Model weights saved in {path_to_weights}")
749

750
        if push_to_hub:
751
752
753
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
754
            model_card.save(Path(save_directory, "README.md").as_posix())
755

756
757
758
759
760
761
762
763
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

764
765
766
767
768
769
770
771
772
773
774
775
    def dequantize(self):
        """
        Potentially dequantize the model in case it has been quantized by a quantization method that support
        dequantization.
        """
        hf_quantizer = getattr(self, "hf_quantizer", None)

        if hf_quantizer is None:
            raise ValueError("You need to first quantize your model in order to dequantize it")

        return hf_quantizer.dequantize(self)

776
    @classmethod
777
    @validate_hf_hub_args
778
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
779
        r"""
Steven Liu's avatar
Steven Liu committed
780
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
781

Steven Liu's avatar
Steven Liu committed
782
783
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
784
785
786
787
788

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
789
790
791
792
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
793
794

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
795
796
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
797
798
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype.
799
800
801
802
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
803
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
804
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
805
            output_loading_info (`bool`, *optional*, defaults to `False`):
806
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
807
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
808
809
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
810
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
811
812
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
813
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
814
815
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
816
817
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
818
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
819
                The subfolder location of a model file within a larger model repository on the Hub or locally.
820
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
821
822
823
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
824
            device_map (`Union[int, str, torch.device]` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
825
826
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
827
                same device. Defaults to `None`, meaning that the model will be loaded on CPU.
828

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
                Examples:

                ```py
                >>> from diffusers import AutoModel
                >>> import torch

                >>> # This works.
                >>> model = AutoModel.from_pretrained(
                ...     "stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", device_map="cuda"
                ... )
                >>> # This also works (integer accelerator device ID).
                >>> model = AutoModel.from_pretrained(
                ...     "stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", device_map=0
                ... )
                >>> # Specifying a supported offloading strategy like "auto" also works.
                >>> model = AutoModel.from_pretrained(
                ...     "stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", device_map="auto"
                ... )
                >>> # Specifying a dictionary as `device_map` also works.
                >>> model = AutoModel.from_pretrained(
                ...     "stabilityai/stable-diffusion-xl-base-1.0",
                ...     subfolder="unet",
                ...     device_map={"": torch.device("cuda")},
                ... )
                ```

Steven Liu's avatar
Steven Liu committed
855
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
856
                more information about each option see [designing a device
857
858
859
860
                map](https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap). You
                can also refer to the [Diffusers-specific
                documentation](https://huggingface.co/docs/diffusers/main/en/training/distributed_inference#model-sharding)
                for more concrete examples.
861
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
862
863
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
864
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
865
                The path to offload weights if `device_map` contains the value `"disk"`.
866
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
867
868
869
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
870
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
871
872
873
874
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
875
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
876
877
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
878
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
879
880
881
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
882
883
884
            disable_mmap ('bool', *optional*, defaults to 'False'):
                Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
                is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
885
886
887

        <Tip>

Steven Liu's avatar
Steven Liu committed
888
889
890
891
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
892
893
894

        </Tip>

Steven Liu's avatar
Steven Liu committed
895
        Example:
896

Steven Liu's avatar
Steven Liu committed
897
898
        ```py
        from diffusers import UNet2DConditionModel
899

Steven Liu's avatar
Steven Liu committed
900
901
902
903
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
904

Steven Liu's avatar
Steven Liu committed
905
906
907
908
909
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
910
        """
911
        cache_dir = kwargs.pop("cache_dir", None)
912
913
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
914
        from_flax = kwargs.pop("from_flax", False)
915
916
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
917
918
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
919
        revision = kwargs.pop("revision", None)
920
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
921
        subfolder = kwargs.pop("subfolder", None)
922
        device_map = kwargs.pop("device_map", None)
923
924
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
925
        offload_state_dict = kwargs.pop("offload_state_dict", None)
926
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
927
        variant = kwargs.pop("variant", None)
928
        use_safetensors = kwargs.pop("use_safetensors", None)
929
        quantization_config = kwargs.pop("quantization_config", None)
Marc Sun's avatar
Marc Sun committed
930
        dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None)
931
        disable_mmap = kwargs.pop("disable_mmap", False)
932

933
        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
934
935
936
937
938
            torch_dtype = torch.float32
            logger.warning(
                f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`."
            )

939
940
        allow_pickle = False
        if use_safetensors is None:
941
            use_safetensors = True
942
            allow_pickle = True
943

944
945
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
946
            logger.warning(
947
948
949
950
951
952
953
954
955
956
957
958
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

959
960
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
961
962
963
964
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
965

966
967
968
969
970
971
972
973
974
975
976
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
977

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if device_map is not None and not is_torch_version(">=", "1.10"):
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.")

1008
1009
1010
1011
1012
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
1013
1014
1015
1016
        unused_kwargs = {}

        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
1027
            token=token,
1028
1029
1030
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
Marc Sun's avatar
Marc Sun committed
1031
            dduf_entries=dduf_entries,
1032
1033
            **kwargs,
        )
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        # no in-place modification of the original config.
        config = copy.deepcopy(config)

        # determine initial quantization config.
        #######################################
        pre_quantized = "quantization_config" in config and config["quantization_config"] is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config["quantization_config"] = DiffusersAutoQuantizer.merge_quantization_configs(
                    config["quantization_config"], quantization_config
                )
            else:
                config["quantization_config"] = quantization_config
            hf_quantizer = DiffusersAutoQuantizer.from_config(
                config["quantization_config"], pre_quantized=pre_quantized
            )
        else:
            hf_quantizer = None

        if hf_quantizer is not None:
            hf_quantizer.validate_environment(torch_dtype=torch_dtype, from_flax=from_flax, device_map=device_map)
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
1056
            device_map = hf_quantizer.update_device_map(device_map)
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

            # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
            user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `hf_quantizer` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False or None when using quantization.")

        # Check if `_keep_in_fp32_modules` is not None
1069
1070
        use_keep_in_fp32_modules = cls._keep_in_fp32_modules is not None and (
            hf_quantizer is None or getattr(hf_quantizer, "use_keep_in_fp32_modules", False)
1071
        )
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
        if use_keep_in_fp32_modules:
            keep_in_fp32_modules = cls._keep_in_fp32_modules
            if not isinstance(keep_in_fp32_modules, list):
                keep_in_fp32_modules = [keep_in_fp32_modules]

            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `_keep_in_fp32_modules` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False when `keep_in_fp32_modules` is True.")
        else:
            keep_in_fp32_modules = []
1085

1086
        is_sharded = False
1087
1088
1089
1090
        resolved_model_file = None

        # Determine if we're loading from a directory of sharded checkpoints.
        sharded_metadata = None
1091
1092
        index_file = None
        is_local = os.path.isdir(pretrained_model_name_or_path)
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
        index_file_kwargs = {
            "is_local": is_local,
            "pretrained_model_name_or_path": pretrained_model_name_or_path,
            "subfolder": subfolder or "",
            "use_safetensors": use_safetensors,
            "cache_dir": cache_dir,
            "variant": variant,
            "force_download": force_download,
            "proxies": proxies,
            "local_files_only": local_files_only,
            "token": token,
            "revision": revision,
            "user_agent": user_agent,
            "commit_hash": commit_hash,
Marc Sun's avatar
Marc Sun committed
1107
            "dduf_entries": dduf_entries,
1108
1109
1110
1111
1112
1113
        }
        index_file = _fetch_index_file(**index_file_kwargs)
        # In case the index file was not found we still have to consider the legacy format.
        # this becomes applicable when the variant is not None.
        if variant is not None and (index_file is None or not os.path.exists(index_file)):
            index_file = _fetch_index_file_legacy(**index_file_kwargs)
Marc Sun's avatar
Marc Sun committed
1114
        if index_file is not None and (dduf_entries or index_file.is_file()):
1115
1116
1117
1118
1119
            is_sharded = True

        if is_sharded and from_flax:
            raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.")

1120
        # load model
1121
        if from_flax:
1122
            resolved_model_file = _get_model_file(
1123
                pretrained_model_name_or_path,
1124
                weights_name=FLAX_WEIGHTS_NAME,
1125
1126
1127
1128
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
1129
                token=token,
1130
1131
1132
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
1133
                commit_hash=commit_hash,
1134
1135
            )
            model = cls.from_config(config, **unused_kwargs)
1136

1137
1138
1139
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

1140
            model = load_flax_checkpoint_in_pytorch_model(model, resolved_model_file)
1141
        else:
Marc Sun's avatar
Marc Sun committed
1142
            # in the case it is sharded, we have already the index
1143
            if is_sharded:
1144
                resolved_model_file, sharded_metadata = _get_checkpoint_shard_files(
1145
1146
1147
1148
1149
1150
1151
1152
1153
                    pretrained_model_name_or_path,
                    index_file,
                    cache_dir=cache_dir,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder or "",
Marc Sun's avatar
Marc Sun committed
1154
                    dduf_entries=dduf_entries,
1155
                )
1156
            elif use_safetensors:
1157
                try:
1158
                    resolved_model_file = _get_model_file(
1159
                        pretrained_model_name_or_path,
1160
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
1161
1162
1163
1164
                        cache_dir=cache_dir,
                        force_download=force_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
1165
                        token=token,
1166
1167
1168
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
1169
                        commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
1170
                        dduf_entries=dduf_entries,
1171
                    )
1172

1173
                except IOError as e:
1174
                    logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
1175
                    if not allow_pickle:
1176
1177
1178
1179
1180
                        raise
                    logger.warning(
                        "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
                    )

1181
1182
            if resolved_model_file is None and not is_sharded:
                resolved_model_file = _get_model_file(
1183
                    pretrained_model_name_or_path,
1184
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
1185
1186
1187
1188
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
1189
                    token=token,
1190
1191
1192
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
1193
                    commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
1194
                    dduf_entries=dduf_entries,
1195
1196
                )

1197
1198
        if not isinstance(resolved_model_file, list):
            resolved_model_file = [resolved_model_file]
1199

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
        # set dtype to instantiate the model under:
        # 1. If torch_dtype is not None, we use that dtype
        # 2. If torch_dtype is float8, we don't use _set_default_torch_dtype and we downcast after loading the model
        dtype_orig = None
        if torch_dtype is not None and not torch_dtype == getattr(torch, "float8_e4m3fn", None):
            if not isinstance(torch_dtype, torch.dtype):
                raise ValueError(
                    f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
                )
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)
1210

1211
        init_contexts = [no_init_weights()]
1212

1213
1214
        if low_cpu_mem_usage:
            init_contexts.append(accelerate.init_empty_weights())
1215

1216
1217
        with ContextManagers(init_contexts):
            model = cls.from_config(config, **unused_kwargs)
1218

1219
1220
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)
1221

1222
1223
1224
1225
1226
1227
        state_dict = None
        if not is_sharded:
            # Time to load the checkpoint
            state_dict = load_state_dict(resolved_model_file[0], disable_mmap=disable_mmap, dduf_entries=dduf_entries)
            # We only fix it for non sharded checkpoints as we don't need it yet for sharded one.
            model._fix_state_dict_keys_on_load(state_dict)
1228

1229
1230
1231
1232
        if is_sharded:
            loaded_keys = sharded_metadata["all_checkpoint_keys"]
        else:
            loaded_keys = list(state_dict.keys())
1233

1234
1235
1236
1237
        if hf_quantizer is not None:
            hf_quantizer.preprocess_model(
                model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
            )
Aryan's avatar
Aryan committed
1238

1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        # Now that the model is loaded, we can determine the device_map
        device_map = _determine_device_map(
            model, device_map, max_memory, torch_dtype, keep_in_fp32_modules, hf_quantizer
        )
        if hf_quantizer is not None:
            hf_quantizer.validate_environment(device_map=device_map)

        (
            model,
            missing_keys,
            unexpected_keys,
            mismatched_keys,
            offload_index,
            error_msgs,
        ) = cls._load_pretrained_model(
            model,
            state_dict,
            resolved_model_file,
            pretrained_model_name_or_path,
            loaded_keys,
            ignore_mismatched_sizes=ignore_mismatched_sizes,
            low_cpu_mem_usage=low_cpu_mem_usage,
            device_map=device_map,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
            dtype=torch_dtype,
            hf_quantizer=hf_quantizer,
            keep_in_fp32_modules=keep_in_fp32_modules,
            dduf_entries=dduf_entries,
        )
        loading_info = {
            "missing_keys": missing_keys,
            "unexpected_keys": unexpected_keys,
            "mismatched_keys": mismatched_keys,
            "error_msgs": error_msgs,
        }
1275

1276
1277
1278
1279
1280
1281
1282
1283
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
            device_map_kwargs = {
                "device_map": device_map,
                "offload_dir": offload_folder,
                "offload_index": offload_index,
            }
            dispatch_model(model, **device_map_kwargs)
1284

1285
1286
1287
1288
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer

1289
1290
1291
1292
1293
1294
        if (
            torch_dtype is not None
            and torch_dtype == getattr(torch, "float8_e4m3fn", None)
            and hf_quantizer is None
            and not use_keep_in_fp32_modules
        ):
1295
1296
            model = model.to(torch_dtype)

1297
1298
1299
1300
1301
1302
        if hf_quantizer is not None:
            # We also make sure to purge `_pre_quantization_dtype` when we serialize
            # the model config because `_pre_quantization_dtype` is `torch.dtype`, not JSON serializable.
            model.register_to_config(_name_or_path=pretrained_model_name_or_path, _pre_quantization_dtype=torch_dtype)
        else:
            model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1303
1304
1305

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
1306

1307
        if output_loading_info:
1308
1309
1310
1311
            return model, loading_info

        return model

1312
1313
1314
    # Adapted from `transformers`.
    @wraps(torch.nn.Module.cuda)
    def cuda(self, *args, **kwargs):
Aryan's avatar
Aryan committed
1315
1316
        from ..hooks.group_offloading import _is_group_offload_enabled

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        # Checks if the model has been loaded in 4-bit or 8-bit with BNB
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "Calling `cuda()` is not supported for `8-bit` quantized models. "
                    " Please use the model as it is, since the model has already been set to the correct devices."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `cuda()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
Aryan's avatar
Aryan committed
1329
1330
1331
1332
1333
1334
1335
1336

        # Checks if group offloading is enabled
        if _is_group_offload_enabled(self):
            logger.warning(
                f"The module '{self.__class__.__name__}' is group offloaded and moving it using `.cuda()` is not supported."
            )
            return self

1337
1338
1339
1340
1341
        return super().cuda(*args, **kwargs)

    # Adapted from `transformers`.
    @wraps(torch.nn.Module.to)
    def to(self, *args, **kwargs):
Aryan's avatar
Aryan committed
1342
1343
1344
        from ..hooks.group_offloading import _is_group_offload_enabled

        device_arg_or_kwarg_present = any(isinstance(arg, torch.device) for arg in args) or "device" in kwargs
1345
1346
        dtype_present_in_args = "dtype" in kwargs

Aryan's avatar
Aryan committed
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        # Try converting arguments to torch.device in case they are passed as strings
        for arg in args:
            if not isinstance(arg, str):
                continue
            try:
                torch.device(arg)
                device_arg_or_kwarg_present = True
            except RuntimeError:
                pass

1357
1358
1359
1360
1361
1362
        if not dtype_present_in_args:
            for arg in args:
                if isinstance(arg, torch.dtype):
                    dtype_present_in_args = True
                    break

1363
        if getattr(self, "is_quantized", False):
1364
1365
            if dtype_present_in_args:
                raise ValueError(
1366
1367
                    "Casting a quantized model to a new `dtype` is unsupported. To set the dtype of unquantized layers, please "
                    "use the `torch_dtype` argument when loading the model using `from_pretrained` or `from_single_file`"
1368
1369
                )

1370
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "`.to` is not supported for `8-bit` bitsandbytes models. Please use the model as it is, since the"
                    " model has already been set to the correct devices and casted to the correct `dtype`."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `to()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
Aryan's avatar
Aryan committed
1381
1382
1383
1384
1385
1386
1387

        if _is_group_offload_enabled(self) and device_arg_or_kwarg_present:
            logger.warning(
                f"The module '{self.__class__.__name__}' is group offloaded and moving it using `.to()` is not supported."
            )
            return self

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
        return super().to(*args, **kwargs)

    # Taken from `transformers`.
    def half(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().half(*args)

    # Taken from `transformers`.
    def float(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().float(*args)

1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
    def compile_repeated_blocks(self, *args, **kwargs):
        """
        Compiles *only* the frequently repeated sub-modules of a model (e.g. the Transformer layers) instead of
        compiling the entire model. This technique—often called **regional compilation** (see the PyTorch recipe
        https://docs.pytorch.org/tutorials/recipes/regional_compilation.html) can reduce end-to-end compile time
        substantially, while preserving the runtime speed-ups you would expect from a full `torch.compile`.

        The set of sub-modules to compile is discovered by the presence of **`_repeated_blocks`** attribute in the
        model definition. Define this attribute on your model subclass as a list/tuple of class names (strings). Every
        module whose class name matches will be compiled.

        Once discovered, each matching sub-module is compiled by calling `submodule.compile(*args, **kwargs)`. Any
        positional or keyword arguments you supply to `compile_repeated_blocks` are forwarded verbatim to
        `torch.compile`.
        """
        repeated_blocks = getattr(self, "_repeated_blocks", None)

        if not repeated_blocks:
            raise ValueError(
                "`_repeated_blocks` attribute is empty. "
                f"Set `_repeated_blocks` for the class `{self.__class__.__name__}` to benefit from faster compilation. "
            )
        has_compiled_region = False
        for submod in self.modules():
            if submod.__class__.__name__ in repeated_blocks:
                submod.compile(*args, **kwargs)
                has_compiled_region = True

        if not has_compiled_region:
            raise ValueError(
                f"Regional compilation failed because {repeated_blocks} classes are not found in the model. "
            )

1445
1446
1447
1448
    @classmethod
    def _load_pretrained_model(
        cls,
        model,
1449
        state_dict: OrderedDict,
1450
        resolved_model_file: List[str],
1451
        pretrained_model_name_or_path: Union[str, os.PathLike],
1452
        loaded_keys: List[str],
1453
        ignore_mismatched_sizes: bool = False,
1454
1455
1456
1457
1458
        assign_to_params_buffers: bool = False,
        hf_quantizer: Optional[DiffusersQuantizer] = None,
        low_cpu_mem_usage: bool = True,
        dtype: Optional[Union[str, torch.dtype]] = None,
        keep_in_fp32_modules: Optional[List[str]] = None,
1459
        device_map: Union[str, int, torch.device, Dict[str, Union[int, str, torch.device]]] = None,
1460
1461
1462
        offload_state_dict: Optional[bool] = None,
        offload_folder: Optional[Union[str, os.PathLike]] = None,
        dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
1463
1464
1465
1466
    ):
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
        missing_keys = list(set(expected_keys) - set(loaded_keys))
1467
1468
        if hf_quantizer is not None:
            missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix="")
1469
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))
1470
1471
1472
1473
1474
        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
1475

1476
1477
1478
1479
1480
1481
1482
1483
        # Deal with offload
        if device_map is not None and "disk" in device_map.values():
            if offload_folder is None:
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
                    " for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
                    " offers the weights in this format."
                )
1484
            else:
1485
1486
1487
1488
                os.makedirs(offload_folder, exist_ok=True)
            if offload_state_dict is None:
                offload_state_dict = True

1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
        # If a device map has been used, we can speedup the load time by warming up the device caching allocator.
        # If we don't warmup, each tensor allocation on device calls to the allocator for memory (effectively, a
        # lot of individual calls to device malloc). We can, however, preallocate the memory required by the
        # tensors using their expected shape and not performing any initialization of the memory (empty data).
        # When the actual device allocations happen, the allocator already has a pool of unused device memory
        # that it can re-use for faster loading of the model.
        # TODO: add support for warmup with hf_quantizer
        if device_map is not None and hf_quantizer is None:
            expanded_device_map = _expand_device_map(device_map, expected_keys)
            _caching_allocator_warmup(model, expanded_device_map, dtype)

1500
        offload_index = {} if device_map is not None and "disk" in device_map.values() else None
1501
        state_dict_folder, state_dict_index = None, None
1502
1503
1504
        if offload_state_dict:
            state_dict_folder = tempfile.mkdtemp()
            state_dict_index = {}
1505
1506

        if state_dict is not None:
1507
1508
1509
1510
1511
1512
1513
            # load_state_dict will manage the case where we pass a dict instead of a file
            # if state dict is not None, it means that we don't need to read the files from resolved_model_file also
            resolved_model_file = [state_dict]

        if len(resolved_model_file) > 1:
            resolved_model_file = logging.tqdm(resolved_model_file, desc="Loading checkpoint shards")

1514
1515
1516
1517
        mismatched_keys = []
        assign_to_params_buffers = None
        error_msgs = []

1518
1519
1520
        for shard_file in resolved_model_file:
            state_dict = load_state_dict(shard_file, dduf_entries=dduf_entries)
            mismatched_keys += _find_mismatched_keys(
1521
                state_dict, model_state_dict, loaded_keys, ignore_mismatched_sizes
1522
            )
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542

            if low_cpu_mem_usage:
                offload_index, state_dict_index = load_model_dict_into_meta(
                    model,
                    state_dict,
                    device_map=device_map,
                    dtype=dtype,
                    hf_quantizer=hf_quantizer,
                    keep_in_fp32_modules=keep_in_fp32_modules,
                    unexpected_keys=unexpected_keys,
                    offload_folder=offload_folder,
                    offload_index=offload_index,
                    state_dict_index=state_dict_index,
                    state_dict_folder=state_dict_folder,
                )
            else:
                if assign_to_params_buffers is None:
                    assign_to_params_buffers = check_support_param_buffer_assignment(model, state_dict)
                error_msgs += _load_state_dict_into_model(model, state_dict, assign_to_params_buffers)

1543
1544
        empty_device_cache()

1545
1546
1547
1548
1549
1550
1551
        if offload_index is not None and len(offload_index) > 0:
            save_offload_index(offload_index, offload_folder)
            offload_index = None

            if offload_state_dict:
                load_offloaded_weights(model, state_dict_index, state_dict_folder)
                shutil.rmtree(state_dict_folder)
1552
1553
1554
1555
1556
1557
1558
1559
1560

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
1561
1562
        if len(unexpected_keys) > 0:
            logger.warning(
1563
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
Patrick von Platen's avatar
Patrick von Platen committed
1564
1565
1566
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
1567

Patrick von Platen's avatar
Patrick von Platen committed
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
1594

1595
        return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
1596

1597
1598
1599
1600
1601
1602
1603
1604
1605
    @classmethod
    def _get_signature_keys(cls, obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
        expected_modules = set(required_parameters.keys()) - {"self"}

        return expected_modules, optional_parameters

1606
1607
1608
    # Adapted from `transformers` modeling_utils.py
    def _get_no_split_modules(self, device_map: str):
        """
1609
        Get the modules of the model that should not be split when using device_map. We iterate through the modules to
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, ModelMixin):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
        return list(_no_split_modules)

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
            dtype (`torch.dtype`):
                a floating dtype to set to.

        Returns:
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.

        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1663
    @property
1664
    def device(self) -> torch.device:
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
1680
        Get number of (trainable or non-embedding) parameters in the module.
1681
1682
1683

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1684
                Whether or not to return only the number of trainable parameters.
1685
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1686
                Whether or not to return only the number of non-embedding parameters.
1687
1688
1689

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
1701
        """
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)

        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
                )
1712
1713
1714

        if exclude_embeddings:
            embedding_param_names = [
1715
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
1716
            ]
1717
            total_parameters = [
1718
1719
1720
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
            total_parameters = list(self.parameters())

        total_numel = []

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    if hasattr(param, "element_size"):
                        num_bytes = param.element_size()
                    elif hasattr(param, "quant_storage"):
                        num_bytes = param.quant_storage.itemsize
                    else:
                        num_bytes = 1
                    total_numel.append(param.numel() * 2 * num_bytes)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)

    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem
1759

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
    def _set_gradient_checkpointing(
        self, enable: bool = True, gradient_checkpointing_func: Callable = torch.utils.checkpoint.checkpoint
    ) -> None:
        is_gradient_checkpointing_set = False

        for name, module in self.named_modules():
            if hasattr(module, "gradient_checkpointing"):
                logger.debug(f"Setting `gradient_checkpointing={enable}` for '{name}'")
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"The module {self.__class__.__name__} does not support gradient checkpointing. Please make sure to "
                f"use a module that supports gradient checkpointing by creating a boolean attribute `gradient_checkpointing`."
            )

1778
1779
1780
1781
1782
1783
1784
    def _fix_state_dict_keys_on_load(self, state_dict: OrderedDict) -> None:
        """
        This function fix the state dict of the model to take into account some changes that were made in the model
        architecture:
        - deprecated attention blocks (happened before we introduced sharded checkpoint,
        so this is why we apply this method only when loading non sharded checkpoints for now)
        """
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
1827
        return state_dict
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838


class LegacyModelMixin(ModelMixin):
    r"""
    A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
    pipeline-specific classes (like `DiTTransformer2DModel`).
    """

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
1839
        # To prevent dependency import problem.
1840
1841
        from .model_loading_utils import _fetch_remapped_cls_from_config

1842
1843
1844
        # Create a copy of the kwargs so that we don't mess with the keyword arguments in the downstream calls.
        kwargs_copy = kwargs.copy()

1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)

        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }

        # load config
        config, _, _ = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            **kwargs,
        )
        # resolve remapping
        remapped_class = _fetch_remapped_cls_from_config(config, cls)

1880
        return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy)