modeling_utils.py 80.7 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import itertools
20
import json
21
import os
22
import re
23
from collections import OrderedDict
24
from functools import wraps
25
from pathlib import Path
Aryan's avatar
Aryan committed
26
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
27

28
import safetensors
29
import torch
30
import torch.utils.checkpoint
Marc Sun's avatar
Marc Sun committed
31
from huggingface_hub import DDUFEntry, create_repo, split_torch_state_dict_into_shards
32
from huggingface_hub.utils import validate_hf_hub_args
33
from torch import Tensor, nn
34
from typing_extensions import Self
35

36
from .. import __version__
Aryan's avatar
Aryan committed
37
from ..hooks import apply_group_offloading, apply_layerwise_casting
38
39
from ..quantizers import DiffusersAutoQuantizer, DiffusersQuantizer
from ..quantizers.quantization_config import QuantizationMethod
40
from ..utils import (
41
    CONFIG_NAME,
42
    FLAX_WEIGHTS_NAME,
43
    SAFE_WEIGHTS_INDEX_NAME,
44
    SAFETENSORS_WEIGHTS_NAME,
45
    WEIGHTS_INDEX_NAME,
46
    WEIGHTS_NAME,
47
    _add_variant,
48
    _get_checkpoint_shard_files,
49
    _get_model_file,
50
    deprecate,
51
    is_accelerate_available,
52
53
    is_bitsandbytes_available,
    is_bitsandbytes_version,
Aryan's avatar
Aryan committed
54
    is_peft_available,
55
56
57
    is_torch_version,
    logging,
)
58
59
60
61
62
from ..utils.hub_utils import (
    PushToHubMixin,
    load_or_create_model_card,
    populate_model_card,
)
63
64
from .model_loading_utils import (
    _determine_device_map,
65
    _fetch_index_file,
66
    _fetch_index_file_legacy,
67
    _load_state_dict_into_model,
68
    _merge_sharded_checkpoints,
69
70
71
    load_model_dict_into_meta,
    load_state_dict,
)
72
73
74
75


logger = logging.get_logger(__name__)

76
77
_REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}")

78

79
80
81
82
83
84
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


85
86
87
88
if is_accelerate_available():
    import accelerate


89
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
Aryan's avatar
Aryan committed
90
91
92
93
94
95
96
97
    from ..hooks.group_offloading import _get_group_onload_device

    try:
        # Try to get the onload device from the group offloading hook
        return _get_group_onload_device(parameter)
    except ValueError:
        pass

98
    try:
Aryan's avatar
Aryan committed
99
100
        # If the onload device is not available due to no group offloading hooks, try to get the device
        # from the first parameter or buffer
Patrick von Platen's avatar
Patrick von Platen committed
101
102
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
103
104
105
106
107
108
109
110
111
112
113
114
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


115
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
116
117
118
    """
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
    """
Aryan's avatar
Aryan committed
119
120
121
122
123
124
125
126
127
128
129
    # 1. Check if we have attached any dtype modifying hooks (eg. layerwise casting)
    if isinstance(parameter, nn.Module):
        for name, submodule in parameter.named_modules():
            if not hasattr(submodule, "_diffusers_hook"):
                continue
            registry = submodule._diffusers_hook
            hook = registry.get_hook("layerwise_casting")
            if hook is not None:
                return hook.compute_dtype

    # 2. If no dtype modifying hooks are attached, return the dtype of the first floating point parameter/buffer
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    last_dtype = None
    for param in parameter.parameters():
        last_dtype = param.dtype
        if param.is_floating_point():
            return param.dtype

    for buffer in parameter.buffers():
        last_dtype = buffer.dtype
        if buffer.is_floating_point():
            return buffer.dtype

    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype

    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
        # fallback to the last dtype
        return last_tuple[1].dtype
160
161


162
class ModelMixin(torch.nn.Module, PushToHubMixin):
163
164
165
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
166
167
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
168

Steven Liu's avatar
Steven Liu committed
169
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
170
    """
171

172
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
173
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
174
    _supports_gradient_checkpointing = False
175
    _keys_to_ignore_on_load_unexpected = None
176
    _no_split_modules = None
177
    _keep_in_fp32_modules = None
Aryan's avatar
Aryan committed
178
    _skip_layerwise_casting_patterns = None
Aryan's avatar
Aryan committed
179
    _supports_group_offloading = True
180

181
    def __init__(self):
182
183
        super().__init__()

184
185
        self._gradient_checkpointing_func = None

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

204
205
206
207
208
209
210
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

211
    def enable_gradient_checkpointing(self, gradient_checkpointing_func: Optional[Callable] = None) -> None:
212
        """
Steven Liu's avatar
Steven Liu committed
213
214
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
215
216
217
218
219

        Args:
            gradient_checkpointing_func (`Callable`, *optional*):
                The function to use for gradient checkpointing. If `None`, the default PyTorch checkpointing function
                is used (`torch.utils.checkpoint.checkpoint`).
220
221
        """
        if not self._supports_gradient_checkpointing:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            raise ValueError(
                f"{self.__class__.__name__} does not support gradient checkpointing. Please make sure to set the boolean attribute "
                f"`_supports_gradient_checkpointing` to `True` in the class definition."
            )

        if gradient_checkpointing_func is None:

            def _gradient_checkpointing_func(module, *args):
                ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                return torch.utils.checkpoint.checkpoint(
                    module.__call__,
                    *args,
                    **ckpt_kwargs,
                )

            gradient_checkpointing_func = _gradient_checkpointing_func

        self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
240

241
    def disable_gradient_checkpointing(self) -> None:
242
        """
Steven Liu's avatar
Steven Liu committed
243
244
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
245
246
        """
        if self._supports_gradient_checkpointing:
247
            self._set_gradient_checkpointing(enable=False)
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    def set_use_npu_flash_attention(self, valid: bool) -> None:
        r"""
        Set the switch for the npu flash attention.
        """

        def fn_recursive_set_npu_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_npu_flash_attention"):
                module.set_use_npu_flash_attention(valid)

            for child in module.children():
                fn_recursive_set_npu_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_npu_flash_attention(module)

    def enable_npu_flash_attention(self) -> None:
        r"""
        Enable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(True)

    def disable_npu_flash_attention(self) -> None:
        r"""
        disable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(False)

Juan Acevedo's avatar
Juan Acevedo committed
279
    def set_use_xla_flash_attention(
280
        self, use_xla_flash_attention: bool, partition_spec: Optional[Callable] = None, **kwargs
Juan Acevedo's avatar
Juan Acevedo committed
281
282
283
284
285
286
    ) -> None:
        # Recursively walk through all the children.
        # Any children which exposes the set_use_xla_flash_attention method
        # gets the message
        def fn_recursive_set_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_xla_flash_attention"):
287
                module.set_use_xla_flash_attention(use_xla_flash_attention, partition_spec, **kwargs)
Juan Acevedo's avatar
Juan Acevedo committed
288
289
290
291
292
293
294
295

            for child in module.children():
                fn_recursive_set_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_flash_attention(module)

296
    def enable_xla_flash_attention(self, partition_spec: Optional[Callable] = None, **kwargs):
Juan Acevedo's avatar
Juan Acevedo committed
297
298
299
        r"""
        Enable the flash attention pallals kernel for torch_xla.
        """
300
        self.set_use_xla_flash_attention(True, partition_spec, **kwargs)
Juan Acevedo's avatar
Juan Acevedo committed
301
302
303
304
305
306
307

    def disable_xla_flash_attention(self):
        r"""
        Disable the flash attention pallals kernel for torch_xla.
        """
        self.set_use_xla_flash_attention(False)

308
309
310
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
311
312
313
314
315
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
316
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
317
318
319
320
321
322
323
324

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

325
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
326
        r"""
Steven Liu's avatar
Steven Liu committed
327
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
328

Steven Liu's avatar
Steven Liu committed
329
330
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
331

Steven Liu's avatar
Steven Liu committed
332
333
334
335
336
337
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
358
        """
359
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
360

361
    def disable_xformers_memory_efficient_attention(self) -> None:
362
        r"""
Steven Liu's avatar
Steven Liu committed
363
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
364
365
366
        """
        self.set_use_memory_efficient_attention_xformers(False)

Aryan's avatar
Aryan committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    def enable_layerwise_casting(
        self,
        storage_dtype: torch.dtype = torch.float8_e4m3fn,
        compute_dtype: Optional[torch.dtype] = None,
        skip_modules_pattern: Optional[Tuple[str, ...]] = None,
        skip_modules_classes: Optional[Tuple[Type[torch.nn.Module], ...]] = None,
        non_blocking: bool = False,
    ) -> None:
        r"""
        Activates layerwise casting for the current model.

        Layerwise casting is a technique that casts the model weights to a lower precision dtype for storage but
        upcasts them on-the-fly to a higher precision dtype for computation. This process can significantly reduce the
        memory footprint from model weights, but may lead to some quality degradation in the outputs. Most degradations
        are negligible, mostly stemming from weight casting in normalization and modulation layers.

        By default, most models in diffusers set the `_skip_layerwise_casting_patterns` attribute to ignore patch
        embedding, positional embedding and normalization layers. This is because these layers are most likely
        precision-critical for quality. If you wish to change this behavior, you can set the
        `_skip_layerwise_casting_patterns` attribute to `None`, or call
        [`~hooks.layerwise_casting.apply_layerwise_casting`] with custom arguments.

        Example:
            Using [`~models.ModelMixin.enable_layerwise_casting`]:

            ```python
            >>> from diffusers import CogVideoXTransformer3DModel

            >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
            ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
            ... )

            >>> # Enable layerwise casting via the model, which ignores certain modules by default
            >>> transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
            ```

        Args:
            storage_dtype (`torch.dtype`):
                The dtype to which the model should be cast for storage.
            compute_dtype (`torch.dtype`):
                The dtype to which the model weights should be cast during the forward pass.
            skip_modules_pattern (`Tuple[str, ...]`, *optional*):
                A list of patterns to match the names of the modules to skip during the layerwise casting process. If
                set to `None`, default skip patterns are used to ignore certain internal layers of modules and PEFT
                layers.
            skip_modules_classes (`Tuple[Type[torch.nn.Module], ...]`, *optional*):
                A list of module classes to skip during the layerwise casting process.
            non_blocking (`bool`, *optional*, defaults to `False`):
                If `True`, the weight casting operations are non-blocking.
        """

        user_provided_patterns = True
        if skip_modules_pattern is None:
            from ..hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN

            skip_modules_pattern = DEFAULT_SKIP_MODULES_PATTERN
            user_provided_patterns = False
        if self._keep_in_fp32_modules is not None:
            skip_modules_pattern += tuple(self._keep_in_fp32_modules)
        if self._skip_layerwise_casting_patterns is not None:
            skip_modules_pattern += tuple(self._skip_layerwise_casting_patterns)
        skip_modules_pattern = tuple(set(skip_modules_pattern))

        if is_peft_available() and not user_provided_patterns:
            # By default, we want to skip all peft layers because they have a very low memory footprint.
            # If users want to apply layerwise casting on peft layers as well, they can utilize the
            # `~diffusers.hooks.layerwise_casting.apply_layerwise_casting` function which provides
            # them with more flexibility and control.

            from peft.tuners.loha.layer import LoHaLayer
            from peft.tuners.lokr.layer import LoKrLayer
            from peft.tuners.lora.layer import LoraLayer

            for layer in (LoHaLayer, LoKrLayer, LoraLayer):
                skip_modules_pattern += tuple(layer.adapter_layer_names)

        if compute_dtype is None:
            logger.info("`compute_dtype` not provided when enabling layerwise casting. Using dtype of the model.")
            compute_dtype = self.dtype

        apply_layerwise_casting(
            self, storage_dtype, compute_dtype, skip_modules_pattern, skip_modules_classes, non_blocking
        )

Aryan's avatar
Aryan committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    def enable_group_offload(
        self,
        onload_device: torch.device,
        offload_device: torch.device = torch.device("cpu"),
        offload_type: str = "block_level",
        num_blocks_per_group: Optional[int] = None,
        non_blocking: bool = False,
        use_stream: bool = False,
    ) -> None:
        r"""
        Activates group offloading for the current model.

        See [`~hooks.group_offloading.apply_group_offloading`] for more information.

        Example:

            ```python
            >>> from diffusers import CogVideoXTransformer3DModel

            >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
            ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
            ... )

            >>> transformer.enable_group_offload(
            ...     onload_device=torch.device("cuda"),
            ...     offload_device=torch.device("cpu"),
            ...     offload_type="leaf_level",
            ...     use_stream=True,
            ... )
            ```
        """
        if getattr(self, "enable_tiling", None) is not None and getattr(self, "use_tiling", False) and use_stream:
            msg = (
                "Applying group offloading on autoencoders, with CUDA streams, may not work as expected if the first "
                "forward pass is executed with tiling enabled. Please make sure to either:\n"
                "1. Run a forward pass with small input shapes.\n"
                "2. Or, run a forward pass with tiling disabled (can still use small dummy inputs)."
            )
            logger.warning(msg)
        if not self._supports_group_offloading:
            raise ValueError(
                f"{self.__class__.__name__} does not support group offloading. Please make sure to set the boolean attribute "
                f"`_supports_group_offloading` to `True` in the class definition. If you believe this is a mistake, please "
                f"open an issue at https://github.com/huggingface/diffusers/issues."
            )
        apply_group_offloading(
            self, onload_device, offload_device, offload_type, num_blocks_per_group, non_blocking, use_stream
        )

500
501
502
503
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
504
        save_function: Optional[Callable] = None,
505
        safe_serialization: bool = True,
506
        variant: Optional[str] = None,
507
        max_shard_size: Union[int, str] = "10GB",
508
509
        push_to_hub: bool = False,
        **kwargs,
510
511
    ):
        """
Steven Liu's avatar
Steven Liu committed
512
513
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
514
515
516

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
517
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
518
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
519
520
521
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
522
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
523
524
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
525
                `DIFFUSERS_SAVE_MODE`.
526
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
527
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
528
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
529
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
530
            max_shard_size (`int` or `str`, defaults to `"10GB"`):
531
532
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
533
534
535
536
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
537
538
539
540
541
542
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
543
544
545
546
547
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

548
549
550
551
552
553
554
555
556
557
558
559
560
        hf_quantizer = getattr(self, "hf_quantizer", None)
        if hf_quantizer is not None:
            quantization_serializable = (
                hf_quantizer is not None
                and isinstance(hf_quantizer, DiffusersQuantizer)
                and hf_quantizer.is_serializable
            )
            if not quantization_serializable:
                raise ValueError(
                    f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                    " the logger on the traceback to understand the reason why the quantized model is not serializable."
                )

561
562
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
        weights_name = _add_variant(weights_name, variant)
563
564
565
        weights_name_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(
            ".safetensors", "{suffix}.safetensors"
        )
566

567
568
        os.makedirs(save_directory, exist_ok=True)

569
570
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
571
            private = kwargs.pop("private", None)
572
573
574
575
576
577
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
578
579
580
581
582
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
583
            model_to_save.save_config(save_directory)
584
585
586
587
588

        # Save the model
        state_dict = model_to_save.state_dict()

        # Save the model
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        state_dict_split = split_torch_state_dict_into_shards(
            state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern
        )

        # Clean the folder from a previous save
        if is_main_process:
            for filename in os.listdir(save_directory):
                if filename in state_dict_split.filename_to_tensors.keys():
                    continue
                full_filename = os.path.join(save_directory, filename)
                if not os.path.isfile(full_filename):
                    continue
                weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "")
                weights_without_ext = weights_without_ext.replace("{suffix}", "")
                filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "")
                # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
                if (
                    filename.startswith(weights_without_ext)
                    and _REGEX_SHARD.fullmatch(filename_without_ext) is not None
                ):
                    os.remove(full_filename)

        for filename, tensors in state_dict_split.filename_to_tensors.items():
612
            shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            filepath = os.path.join(save_directory, filename)
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"})
            else:
                torch.save(shard, filepath)

        if state_dict_split.is_sharded:
            index = {
                "metadata": state_dict_split.metadata,
                "weight_map": state_dict_split.tensor_to_filename,
            }
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
636
637
            )
        else:
638
639
            path_to_weights = os.path.join(save_directory, weights_name)
            logger.info(f"Model weights saved in {path_to_weights}")
640

641
        if push_to_hub:
642
643
644
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
645
            model_card.save(Path(save_directory, "README.md").as_posix())
646

647
648
649
650
651
652
653
654
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

655
656
657
658
659
660
661
662
663
664
665
666
    def dequantize(self):
        """
        Potentially dequantize the model in case it has been quantized by a quantization method that support
        dequantization.
        """
        hf_quantizer = getattr(self, "hf_quantizer", None)

        if hf_quantizer is None:
            raise ValueError("You need to first quantize your model in order to dequantize it")

        return hf_quantizer.dequantize(self)

667
    @classmethod
668
    @validate_hf_hub_args
669
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs) -> Self:
670
        r"""
Steven Liu's avatar
Steven Liu committed
671
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
672

Steven Liu's avatar
Steven Liu committed
673
674
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
675
676
677
678
679

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
680
681
682
683
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
684
685

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
686
687
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
688
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
689
690
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
691
692
693
694
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
695
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
696
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
697
            output_loading_info (`bool`, *optional*, defaults to `False`):
698
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
699
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
700
701
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
702
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
703
704
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
705
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
706
707
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
708
709
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
710
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
711
                The subfolder location of a model file within a larger model repository on the Hub or locally.
712
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
713
714
715
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
716
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
717
718
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
719
                same device. Defaults to `None`, meaning that the model will be loaded on CPU.
720

Steven Liu's avatar
Steven Liu committed
721
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
722
723
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
724
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
725
726
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
727
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
728
                The path to offload weights if `device_map` contains the value `"disk"`.
729
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
730
731
732
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
733
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
734
735
736
737
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
738
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
739
740
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
741
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
742
743
744
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
745
746
747
            disable_mmap ('bool', *optional*, defaults to 'False'):
                Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
                is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
748
749
750

        <Tip>

Steven Liu's avatar
Steven Liu committed
751
752
753
754
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
755
756
757

        </Tip>

Steven Liu's avatar
Steven Liu committed
758
        Example:
759

Steven Liu's avatar
Steven Liu committed
760
761
        ```py
        from diffusers import UNet2DConditionModel
762

Steven Liu's avatar
Steven Liu committed
763
764
765
766
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
767

Steven Liu's avatar
Steven Liu committed
768
769
770
771
772
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
773
        """
774
        cache_dir = kwargs.pop("cache_dir", None)
775
776
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
777
        from_flax = kwargs.pop("from_flax", False)
778
779
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
780
781
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
782
        revision = kwargs.pop("revision", None)
783
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
784
        subfolder = kwargs.pop("subfolder", None)
785
        device_map = kwargs.pop("device_map", None)
786
787
788
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
789
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
790
        variant = kwargs.pop("variant", None)
791
        use_safetensors = kwargs.pop("use_safetensors", None)
792
        quantization_config = kwargs.pop("quantization_config", None)
Marc Sun's avatar
Marc Sun committed
793
        dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None)
794
        disable_mmap = kwargs.pop("disable_mmap", False)
795
796
797

        allow_pickle = False
        if use_safetensors is None:
798
            use_safetensors = True
799
            allow_pickle = True
800

801
802
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
803
            logger.warning(
804
805
806
807
808
809
810
811
812
813
814
815
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

816
817
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
818
819
820
821
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
822

823
824
825
826
827
828
829
830
831
832
833
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
834

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if device_map is not None and not is_torch_version(">=", "1.10"):
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.")

865
866
867
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

868
869
870
871
872
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
873

874
875
876
877
878
879
880
881
882
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
883
            token=token,
884
885
886
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
Marc Sun's avatar
Marc Sun committed
887
            dduf_entries=dduf_entries,
888
889
            **kwargs,
        )
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
        # no in-place modification of the original config.
        config = copy.deepcopy(config)

        # determine initial quantization config.
        #######################################
        pre_quantized = "quantization_config" in config and config["quantization_config"] is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config["quantization_config"] = DiffusersAutoQuantizer.merge_quantization_configs(
                    config["quantization_config"], quantization_config
                )
            else:
                config["quantization_config"] = quantization_config
            hf_quantizer = DiffusersAutoQuantizer.from_config(
                config["quantization_config"], pre_quantized=pre_quantized
            )
        else:
            hf_quantizer = None

        if hf_quantizer is not None:
910
            if device_map is not None:
911
                raise NotImplementedError(
912
                    "Currently, providing `device_map` is not supported for quantized models. Providing `device_map` as an input will be added in the future."
913
                )
Aryan's avatar
Aryan committed
914

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
            hf_quantizer.validate_environment(torch_dtype=torch_dtype, from_flax=from_flax, device_map=device_map)
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)

            # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
            user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `hf_quantizer` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False or None when using quantization.")

        # Check if `_keep_in_fp32_modules` is not None
        use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
            (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
        )
        if use_keep_in_fp32_modules:
            keep_in_fp32_modules = cls._keep_in_fp32_modules
            if not isinstance(keep_in_fp32_modules, list):
                keep_in_fp32_modules = [keep_in_fp32_modules]

            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `_keep_in_fp32_modules` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False when `keep_in_fp32_modules` is True.")
        else:
            keep_in_fp32_modules = []
        #######################################
945

946
947
948
949
        # Determine if we're loading from a directory of sharded checkpoints.
        is_sharded = False
        index_file = None
        is_local = os.path.isdir(pretrained_model_name_or_path)
950
951
952
953
954
955
956
957
958
959
960
961
962
963
        index_file_kwargs = {
            "is_local": is_local,
            "pretrained_model_name_or_path": pretrained_model_name_or_path,
            "subfolder": subfolder or "",
            "use_safetensors": use_safetensors,
            "cache_dir": cache_dir,
            "variant": variant,
            "force_download": force_download,
            "proxies": proxies,
            "local_files_only": local_files_only,
            "token": token,
            "revision": revision,
            "user_agent": user_agent,
            "commit_hash": commit_hash,
Marc Sun's avatar
Marc Sun committed
964
            "dduf_entries": dduf_entries,
965
966
967
968
969
970
        }
        index_file = _fetch_index_file(**index_file_kwargs)
        # In case the index file was not found we still have to consider the legacy format.
        # this becomes applicable when the variant is not None.
        if variant is not None and (index_file is None or not os.path.exists(index_file)):
            index_file = _fetch_index_file_legacy(**index_file_kwargs)
Marc Sun's avatar
Marc Sun committed
971
        if index_file is not None and (dduf_entries or index_file.is_file()):
972
973
974
975
976
            is_sharded = True

        if is_sharded and from_flax:
            raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.")

977
        # load model
978
        model_file = None
979
        if from_flax:
980
            model_file = _get_model_file(
981
                pretrained_model_name_or_path,
982
                weights_name=FLAX_WEIGHTS_NAME,
983
984
985
986
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
987
                token=token,
988
989
990
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
991
                commit_hash=commit_hash,
992
993
            )
            model = cls.from_config(config, **unused_kwargs)
994

995
996
997
998
999
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
Marc Sun's avatar
Marc Sun committed
1000
            # in the case it is sharded, we have already the index
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
            if is_sharded:
                sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files(
                    pretrained_model_name_or_path,
                    index_file,
                    cache_dir=cache_dir,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder or "",
Marc Sun's avatar
Marc Sun committed
1012
                    dduf_entries=dduf_entries,
1013
                )
1014
                # TODO: https://github.com/huggingface/diffusers/issues/10013
Marc Sun's avatar
Marc Sun committed
1015
1016
1017
1018
                if hf_quantizer is not None or dduf_entries:
                    model_file = _merge_sharded_checkpoints(
                        sharded_ckpt_cached_folder, sharded_metadata, dduf_entries=dduf_entries
                    )
1019
1020
                    logger.info("Merged sharded checkpoints as `hf_quantizer` is not None.")
                    is_sharded = False
1021
1022

            elif use_safetensors and not is_sharded:
1023
                try:
1024
                    model_file = _get_model_file(
1025
                        pretrained_model_name_or_path,
1026
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
1027
1028
1029
1030
                        cache_dir=cache_dir,
                        force_download=force_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
1031
                        token=token,
1032
1033
1034
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
1035
                        commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
1036
                        dduf_entries=dduf_entries,
1037
                    )
1038

1039
                except IOError as e:
1040
                    logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
1041
                    if not allow_pickle:
1042
1043
1044
1045
1046
1047
                        raise
                    logger.warning(
                        "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
                    )

            if model_file is None and not is_sharded:
1048
                model_file = _get_model_file(
1049
                    pretrained_model_name_or_path,
1050
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
1051
1052
1053
1054
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
1055
                    token=token,
1056
1057
1058
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
1059
                    commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
1060
                    dduf_entries=dduf_entries,
1061
1062
1063
1064
1065
1066
1067
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

1068
1069
1070
1071
1072
                if hf_quantizer is not None:
                    hf_quantizer.preprocess_model(
                        model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
                    )

1073
                # if device_map is None, load the state dict and move the params from meta device to the cpu
1074
                if device_map is None and not is_sharded:
1075
1076
1077
1078
1079
                    # `torch.cuda.current_device()` is fine here when `hf_quantizer` is not None.
                    # It would error out during the `validate_environment()` call above in the absence of cuda.
                    if hf_quantizer is None:
                        param_device = "cpu"
                    # TODO (sayakpaul,  SunMarc): remove this after model loading refactor
Aryan's avatar
Aryan committed
1080
                    else:
1081
                        param_device = torch.device(torch.cuda.current_device())
Marc Sun's avatar
Marc Sun committed
1082
1083
1084
                    state_dict = load_state_dict(
                        model_file, variant=variant, dduf_entries=dduf_entries, disable_mmap=disable_mmap
                    )
1085
                    model._convert_deprecated_attention_blocks(state_dict)
1086

1087
                    # move the params from meta device to cpu
1088
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
1089
1090
                    if hf_quantizer is not None:
                        missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix="")
1091
1092
1093
1094
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1095
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
1096
1097
                            " those weights or else make sure your checkpoint file is correct."
                        )
1098

hlky's avatar
hlky committed
1099
1100
                    named_buffers = model.named_buffers()

1101
1102
1103
1104
1105
1106
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
1107
1108
                        hf_quantizer=hf_quantizer,
                        keep_in_fp32_modules=keep_in_fp32_modules,
hlky's avatar
hlky committed
1109
                        named_buffers=named_buffers,
1110
                    )
1111
1112
1113
1114
1115
1116

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
1117
                        logger.warning(
1118
1119
1120
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

1121
1122
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1123
                    # by default the device_map is None and the weights are loaded on the CPU
1124
1125
1126
                    device_map = _determine_device_map(
                        model, device_map, max_memory, torch_dtype, keep_in_fp32_modules, hf_quantizer
                    )
1127
1128
1129
                    if device_map is None and is_sharded:
                        # we load the parameters on the cpu
                        device_map = {"": "cpu"}
1130
1131
1132
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
1133
                            model_file if not is_sharded else index_file,
1134
1135
1136
1137
1138
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
1139
                            strict=True,
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
1152
                            logger.warning(
1153
1154
1155
1156
1157
1158
1159
1160
1161
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
1162
                                model_file if not is_sharded else index_file,
1163
1164
1165
1166
1167
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
1168
                                strict=True,
1169
1170
1171
1172
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
1173
1174
1175
1176
1177
1178
1179
1180

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
1181
                model = cls.from_config(config, **unused_kwargs)
1182

Marc Sun's avatar
Marc Sun committed
1183
1184
1185
                state_dict = load_state_dict(
                    model_file, variant=variant, dduf_entries=dduf_entries, disable_mmap=disable_mmap
                )
1186
                model._convert_deprecated_attention_blocks(state_dict)
1187

1188
1189
1190
1191
1192
1193
1194
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
1195

1196
1197
1198
1199
1200
1201
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
1202

1203
1204
1205
1206
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer

1207
1208
1209
1210
        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
1211
1212
1213
        # When using `use_keep_in_fp32_modules` if we do a global `to()` here, then we will
        # completely lose the effectivity of `use_keep_in_fp32_modules`.
        elif torch_dtype is not None and hf_quantizer is None and not use_keep_in_fp32_modules:
1214
1215
            model = model.to(torch_dtype)

1216
1217
1218
1219
1220
1221
        if hf_quantizer is not None:
            # We also make sure to purge `_pre_quantization_dtype` when we serialize
            # the model config because `_pre_quantization_dtype` is `torch.dtype`, not JSON serializable.
            model.register_to_config(_name_or_path=pretrained_model_name_or_path, _pre_quantization_dtype=torch_dtype)
        else:
            model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1222
1223
1224
1225

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
1226
1227
1228
1229
            return model, loading_info

        return model

1230
1231
1232
    # Adapted from `transformers`.
    @wraps(torch.nn.Module.cuda)
    def cuda(self, *args, **kwargs):
Aryan's avatar
Aryan committed
1233
1234
        from ..hooks.group_offloading import _is_group_offload_enabled

1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
        # Checks if the model has been loaded in 4-bit or 8-bit with BNB
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "Calling `cuda()` is not supported for `8-bit` quantized models. "
                    " Please use the model as it is, since the model has already been set to the correct devices."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `cuda()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
Aryan's avatar
Aryan committed
1247
1248
1249
1250
1251
1252
1253
1254

        # Checks if group offloading is enabled
        if _is_group_offload_enabled(self):
            logger.warning(
                f"The module '{self.__class__.__name__}' is group offloaded and moving it using `.cuda()` is not supported."
            )
            return self

1255
1256
1257
1258
1259
        return super().cuda(*args, **kwargs)

    # Adapted from `transformers`.
    @wraps(torch.nn.Module.to)
    def to(self, *args, **kwargs):
Aryan's avatar
Aryan committed
1260
1261
1262
        from ..hooks.group_offloading import _is_group_offload_enabled

        device_arg_or_kwarg_present = any(isinstance(arg, torch.device) for arg in args) or "device" in kwargs
1263
1264
        dtype_present_in_args = "dtype" in kwargs

Aryan's avatar
Aryan committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        # Try converting arguments to torch.device in case they are passed as strings
        for arg in args:
            if not isinstance(arg, str):
                continue
            try:
                torch.device(arg)
                device_arg_or_kwarg_present = True
            except RuntimeError:
                pass

1275
1276
1277
1278
1279
1280
        if not dtype_present_in_args:
            for arg in args:
                if isinstance(arg, torch.dtype):
                    dtype_present_in_args = True
                    break

1281
        if getattr(self, "is_quantized", False):
1282
1283
            if dtype_present_in_args:
                raise ValueError(
1284
1285
                    "Casting a quantized model to a new `dtype` is unsupported. To set the dtype of unquantized layers, please "
                    "use the `torch_dtype` argument when loading the model using `from_pretrained` or `from_single_file`"
1286
1287
                )

1288
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "`.to` is not supported for `8-bit` bitsandbytes models. Please use the model as it is, since the"
                    " model has already been set to the correct devices and casted to the correct `dtype`."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `to()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
Aryan's avatar
Aryan committed
1299
1300
1301
1302
1303
1304
1305

        if _is_group_offload_enabled(self) and device_arg_or_kwarg_present:
            logger.warning(
                f"The module '{self.__class__.__name__}' is group offloaded and moving it using `.to()` is not supported."
            )
            return self

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        return super().to(*args, **kwargs)

    # Taken from `transformers`.
    def half(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().half(*args)

    # Taken from `transformers`.
    def float(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().float(*args)

1330
1331
1332
1333
    @classmethod
    def _load_pretrained_model(
        cls,
        model,
1334
        state_dict: OrderedDict,
1335
        resolved_archive_file,
1336
1337
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
1338
1339
1340
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
1341
        loaded_keys = list(state_dict.keys())
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
1431
1432
1433

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

1434
1435
1436
1437
1438
1439
1440
1441
1442
    @classmethod
    def _get_signature_keys(cls, obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
        expected_modules = set(required_parameters.keys()) - {"self"}

        return expected_modules, optional_parameters

1443
1444
1445
    # Adapted from `transformers` modeling_utils.py
    def _get_no_split_modules(self, device_map: str):
        """
1446
        Get the modules of the model that should not be split when using device_map. We iterate through the modules to
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, ModelMixin):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
        return list(_no_split_modules)

1473
    @property
1474
    def device(self) -> torch.device:
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
1490
        Get number of (trainable or non-embedding) parameters in the module.
1491
1492
1493

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1494
                Whether or not to return only the number of trainable parameters.
1495
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1496
                Whether or not to return only the number of non-embedding parameters.
1497
1498
1499

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
1511
        """
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)

        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
                )
1522
1523
1524

        if exclude_embeddings:
            embedding_param_names = [
1525
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
1526
            ]
1527
            total_parameters = [
1528
1529
1530
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
            total_parameters = list(self.parameters())

        total_numel = []

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    if hasattr(param, "element_size"):
                        num_bytes = param.element_size()
                    elif hasattr(param, "quant_storage"):
                        num_bytes = param.quant_storage.itemsize
                    else:
                        num_bytes = 1
                    total_numel.append(param.numel() * 2 * num_bytes)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)

    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem
1569

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
    def _set_gradient_checkpointing(
        self, enable: bool = True, gradient_checkpointing_func: Callable = torch.utils.checkpoint.checkpoint
    ) -> None:
        is_gradient_checkpointing_set = False

        for name, module in self.named_modules():
            if hasattr(module, "gradient_checkpointing"):
                logger.debug(f"Setting `gradient_checkpointing={enable}` for '{name}'")
                module._gradient_checkpointing_func = gradient_checkpointing_func
                module.gradient_checkpointing = enable
                is_gradient_checkpointing_set = True

        if not is_gradient_checkpointing_set:
            raise ValueError(
                f"The module {self.__class__.__name__} does not support gradient checkpointing. Please make sure to "
                f"use a module that supports gradient checkpointing by creating a boolean attribute `gradient_checkpointing`."
            )

1588
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
1631

1632
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

1659
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1660
1661
        deprecated_attention_block_modules = []

1662
        def recursive_find_attn_block(module) -> None:
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691


class LegacyModelMixin(ModelMixin):
    r"""
    A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
    pipeline-specific classes (like `DiTTransformer2DModel`).
    """

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
1692
        # To prevent dependency import problem.
1693
1694
        from .model_loading_utils import _fetch_remapped_cls_from_config

1695
1696
1697
        # Create a copy of the kwargs so that we don't mess with the keyword arguments in the downstream calls.
        kwargs_copy = kwargs.copy()

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)

        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }

        # load config
        config, _, _ = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            **kwargs,
        )
        # resolve remapping
        remapped_class = _fetch_remapped_cls_from_config(config, cls)

1733
        return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy)