modeling_utils.py 52.1 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
18
import itertools
19
import os
20
import re
21
from collections import OrderedDict
22
from functools import partial
23
from pathlib import Path
24
from typing import Any, Callable, List, Optional, Tuple, Union
25

26
import safetensors
27
import torch
28
from huggingface_hub import create_repo
29
from huggingface_hub.utils import validate_hf_hub_args
30
from torch import Tensor, nn
31

32
33
from .. import __version__
from ..utils import (
34
    CONFIG_NAME,
35
    FLAX_WEIGHTS_NAME,
36
    SAFETENSORS_FILE_EXTENSION,
37
    SAFETENSORS_WEIGHTS_NAME,
38
    WEIGHTS_NAME,
39
40
    _add_variant,
    _get_model_file,
41
    deprecate,
42
43
44
45
    is_accelerate_available,
    is_torch_version,
    logging,
)
46
from ..utils.hub_utils import PushToHubMixin, load_or_create_model_card, populate_model_card
47
48
49
50
51


logger = logging.get_logger(__name__)


52
53
54
55
56
57
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


58
59
if is_accelerate_available():
    import accelerate
60
61
    from accelerate import infer_auto_device_map
    from accelerate.utils import get_balanced_memory, get_max_memory, set_module_tensor_to_device
62
63
64
    from accelerate.utils.versions import is_torch_version


65
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
66
    try:
Patrick von Platen's avatar
Patrick von Platen committed
67
68
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
69
70
71
72
73
74
75
76
77
78
79
80
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


81
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
82
    try:
83
84
85
86
87
88
89
90
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

91
92
93
94
95
96
97
98
99
100
101
102
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Adapted from `transformers` (see modeling_utils.py)
def _determine_device_map(model: "ModelMixin", device_map, max_memory, torch_dtype):
    if isinstance(device_map, str):
        no_split_modules = model._get_no_split_modules(device_map)
        device_map_kwargs = {"no_split_module_classes": no_split_modules}

        if device_map != "sequential":
            max_memory = get_balanced_memory(
                model,
                dtype=torch_dtype,
                low_zero=(device_map == "balanced_low_0"),
                max_memory=max_memory,
                **device_map_kwargs,
            )
        else:
            max_memory = get_max_memory(max_memory)

        device_map_kwargs["max_memory"] = max_memory
        device_map = infer_auto_device_map(model, dtype=torch_dtype, **device_map_kwargs)

    return device_map


126
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
127
    """
128
    Reads a checkpoint file, returning properly formatted errors if they arise.
129
130
    """
    try:
131
132
        file_extension = os.path.basename(checkpoint_file).split(".")[-1]
        if file_extension == SAFETENSORS_FILE_EXTENSION:
133
            return safetensors.torch.load_file(checkpoint_file, device="cpu")
134
        else:
135
136
137
138
139
140
            weights_only_kwarg = {"weights_only": True} if is_torch_version(">=", "1.13") else {}
            return torch.load(
                checkpoint_file,
                map_location="cpu",
                **weights_only_kwarg,
            )
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
Sayak Paul's avatar
Sayak Paul committed
157
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. "
158
159
160
            )


161
162
163
164
165
166
167
def load_model_dict_into_meta(
    model,
    state_dict: OrderedDict,
    device: Optional[Union[str, torch.device]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    model_name_or_path: Optional[str] = None,
) -> List[str]:
168
169
170
    device = device or torch.device("cpu")
    dtype = dtype or torch.float32

171
172
    accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    unexpected_keys = []
    empty_state_dict = model.state_dict()
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            unexpected_keys.append(param_name)
            continue

        if empty_state_dict[param_name].shape != param.shape:
            model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
            raise ValueError(
                f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
            )

        if accepts_dtype:
            set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
        else:
            set_module_tensor_to_device(model, param_name, device, value=param)
    return unexpected_keys


193
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
194
195
196
197
198
199
200
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
201
    def load(module: torch.nn.Module, prefix: str = ""):
202
203
204
205
206
207
208
209
210
211
212
213
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs


214
class ModelMixin(torch.nn.Module, PushToHubMixin):
215
216
217
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
218
219
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
220

Steven Liu's avatar
Steven Liu committed
221
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
222
    """
223

224
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
225
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
226
    _supports_gradient_checkpointing = False
227
    _keys_to_ignore_on_load_unexpected = None
228
    _no_split_modules = None
229

230
    def __init__(self):
231
232
        super().__init__()

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

251
252
253
254
255
256
257
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

258
    def enable_gradient_checkpointing(self) -> None:
259
        """
Steven Liu's avatar
Steven Liu committed
260
261
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
262
263
264
265
266
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

267
    def disable_gradient_checkpointing(self) -> None:
268
        """
Steven Liu's avatar
Steven Liu committed
269
270
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
271
272
273
274
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def set_use_npu_flash_attention(self, valid: bool) -> None:
        r"""
        Set the switch for the npu flash attention.
        """

        def fn_recursive_set_npu_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_npu_flash_attention"):
                module.set_use_npu_flash_attention(valid)

            for child in module.children():
                fn_recursive_set_npu_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_npu_flash_attention(module)

    def enable_npu_flash_attention(self) -> None:
        r"""
        Enable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(True)

    def disable_npu_flash_attention(self) -> None:
        r"""
        disable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(False)

305
306
307
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
308
309
310
311
312
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
313
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
314
315
316
317
318
319
320
321

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

322
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
323
        r"""
Steven Liu's avatar
Steven Liu committed
324
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
325

Steven Liu's avatar
Steven Liu committed
326
327
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
328

Steven Liu's avatar
Steven Liu committed
329
330
331
332
333
334
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
355
        """
356
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
357

358
    def disable_xformers_memory_efficient_attention(self) -> None:
359
        r"""
Steven Liu's avatar
Steven Liu committed
360
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
361
362
363
        """
        self.set_use_memory_efficient_attention_xformers(False)

364
365
366
367
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
368
        save_function: Optional[Callable] = None,
369
        safe_serialization: bool = True,
370
        variant: Optional[str] = None,
371
372
        push_to_hub: bool = False,
        **kwargs,
373
374
    ):
        """
Steven Liu's avatar
Steven Liu committed
375
376
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
377
378
379

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
380
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
381
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
382
383
384
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
385
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
386
387
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
388
                `DIFFUSERS_SAVE_MODE`.
389
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
390
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
391
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
392
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
393
394
395
396
397
398
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
399
400
401
402
403
404
405
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

406
407
408
409
410
411
412
413
414
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
415
416
417
418
419
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
420
            model_to_save.save_config(save_directory)
421
422
423
424

        # Save the model
        state_dict = model_to_save.state_dict()

425
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
426
        weights_name = _add_variant(weights_name, variant)
427

428
        # Save the model
429
430
        if safe_serialization:
            safetensors.torch.save_file(
431
                state_dict, Path(save_directory, weights_name).as_posix(), metadata={"format": "pt"}
432
433
            )
        else:
434
            torch.save(state_dict, Path(save_directory, weights_name).as_posix())
435

436
        logger.info(f"Model weights saved in {Path(save_directory, weights_name).as_posix()}")
437

438
        if push_to_hub:
439
440
441
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
442
            model_card.save(Path(save_directory, "README.md").as_posix())
443

444
445
446
447
448
449
450
451
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

452
    @classmethod
453
    @validate_hf_hub_args
454
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
455
        r"""
Steven Liu's avatar
Steven Liu committed
456
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
457

Steven Liu's avatar
Steven Liu committed
458
459
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
460
461
462
463
464

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
465
466
467
468
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
469
470

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
471
472
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
473
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
474
475
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
476
477
478
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
479
480
481
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
                of Diffusers.
482
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
483
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
484
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
485
            output_loading_info (`bool`, *optional*, defaults to `False`):
486
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
487
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
488
489
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
490
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
491
492
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
493
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
494
495
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
496
497
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
498
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
499
                The subfolder location of a model file within a larger model repository on the Hub or locally.
500
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
501
502
503
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
504
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
505
506
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
507
508
                same device.

Steven Liu's avatar
Steven Liu committed
509
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
510
511
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
512
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
513
514
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
515
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
516
                The path to offload weights if `device_map` contains the value `"disk"`.
517
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
518
519
520
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
521
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
522
523
524
525
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
526
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
527
528
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
529
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
530
531
532
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
533
534
535

        <Tip>

Steven Liu's avatar
Steven Liu committed
536
537
538
539
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
540
541
542

        </Tip>

Steven Liu's avatar
Steven Liu committed
543
        Example:
544

Steven Liu's avatar
Steven Liu committed
545
546
        ```py
        from diffusers import UNet2DConditionModel
547

Steven Liu's avatar
Steven Liu committed
548
549
550
551
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
552

Steven Liu's avatar
Steven Liu committed
553
554
555
556
557
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
558
        """
559
        cache_dir = kwargs.pop("cache_dir", None)
560
561
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
562
        from_flax = kwargs.pop("from_flax", False)
563
        resume_download = kwargs.pop("resume_download", None)
564
565
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
566
567
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
568
        revision = kwargs.pop("revision", None)
569
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
570
        subfolder = kwargs.pop("subfolder", None)
571
        device_map = kwargs.pop("device_map", None)
572
573
574
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
575
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
576
        variant = kwargs.pop("variant", None)
577
578
579
580
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
581
            use_safetensors = True
582
            allow_pickle = True
583

584
585
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
586
            logger.warning(
587
588
589
590
591
592
593
594
595
596
597
598
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

599
600
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
601
602
603
604
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
605

606
607
608
609
610
611
612
613
614
615
616
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
617

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if device_map is not None and not is_torch_version(">=", "1.10"):
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.")

648
649
650
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

651
652
653
654
655
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
656

657
658
659
660
661
662
663
664
665
666
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
667
            token=token,
668
669
670
671
672
673
674
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            **kwargs,
        )

        # load model
675
        model_file = None
676
        if from_flax:
677
            model_file = _get_model_file(
678
                pretrained_model_name_or_path,
679
                weights_name=FLAX_WEIGHTS_NAME,
680
681
682
683
684
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
685
                token=token,
686
687
688
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
689
                commit_hash=commit_hash,
690
691
            )
            model = cls.from_config(config, **unused_kwargs)
692

693
694
695
696
697
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
698
            if use_safetensors:
699
                try:
700
                    model_file = _get_model_file(
701
                        pretrained_model_name_or_path,
702
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
703
704
705
706
707
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
708
                        token=token,
709
710
711
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
712
                        commit_hash=commit_hash,
713
                    )
714
715
716
                except IOError as e:
                    if not allow_pickle:
                        raise e
717
718
                    pass
            if model_file is None:
719
                model_file = _get_model_file(
720
                    pretrained_model_name_or_path,
721
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
722
723
724
725
726
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
727
                    token=token,
728
729
730
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
731
                    commit_hash=commit_hash,
732
733
734
735
736
737
738
739
740
741
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
742
                    state_dict = load_state_dict(model_file, variant=variant)
743
                    model._convert_deprecated_attention_blocks(state_dict)
744
                    # move the params from meta device to cpu
745
746
747
748
749
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
750
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
751
752
                            " those weights or else make sure your checkpoint file is correct."
                        )
753

754
755
756
757
758
759
760
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
                    )
761
762
763
764
765
766

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
767
                        logger.warning(
768
769
770
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

771
772
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
773
                    # by default the device_map is None and the weights are loaded on the CPU
774
                    device_map = _determine_device_map(model, device_map, max_memory, torch_dtype)
775
776
777
778
779
780
781
782
783
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
784
                            force_hooks=True,
785
                            strict=True,
786
787
788
789
790
791
792
793
794
795
796
797
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
798
                            logger.warning(
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
818
819
820
821
822
823
824
825

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
826
                model = cls.from_config(config, **unused_kwargs)
827

828
                state_dict = load_state_dict(model_file, variant=variant)
829
                model._convert_deprecated_attention_blocks(state_dict)
830

831
832
833
834
835
836
837
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
838

839
840
841
842
843
844
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
845
846
847
848
849
850
851
852
853
854
855
856
857

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
858
859
860
861
862
863
864
865
            return model, loading_info

        return model

    @classmethod
    def _load_pretrained_model(
        cls,
        model,
866
        state_dict: OrderedDict,
867
        resolved_archive_file,
868
869
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
870
871
872
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
873
        loaded_keys = list(state_dict.keys())
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
963
964
965

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    # Adapted from `transformers` modeling_utils.py
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, ModelMixin):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
        return list(_no_split_modules)

996
    @property
997
    def device(self) -> torch.device:
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
1013
        Get number of (trainable or non-embedding) parameters in the module.
1014
1015
1016

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1017
                Whether or not to return only the number of trainable parameters.
1018
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1019
                Whether or not to return only the number of non-embedding parameters.
1020
1021
1022

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        """

        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight"
                for name, module_type in self.named_modules()
                if isinstance(module_type, torch.nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
1048

1049
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
1092

1093
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

1120
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1121
1122
        deprecated_attention_block_modules = []

1123
        def recursive_find_attn_block(module) -> None:
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn