"vscode:/vscode.git/clone" did not exist on "d849816659539eb4c3807f80a865f754dc76d586"
modeling_utils.py 53.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
18
import itertools
19
import os
20
import re
21
from collections import OrderedDict
22
from functools import partial
23
from typing import Any, Callable, List, Optional, Tuple, Union
24

25
import safetensors
26
import torch
27
from huggingface_hub import create_repo
28
from torch import Tensor, nn
29

30
31
from .. import __version__
from ..utils import (
32
33
    CONFIG_NAME,
    DIFFUSERS_CACHE,
34
    FLAX_WEIGHTS_NAME,
35
    HF_HUB_OFFLINE,
36
    MIN_PEFT_VERSION,
37
    SAFETENSORS_WEIGHTS_NAME,
38
    WEIGHTS_NAME,
39
40
    _add_variant,
    _get_model_file,
41
    check_peft_version,
42
    deprecate,
43
44
45
46
    is_accelerate_available,
    is_torch_version,
    logging,
)
47
from ..utils.hub_utils import PushToHubMixin
48
49
50
51
52


logger = logging.get_logger(__name__)


53
54
55
56
57
58
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


59
60
61
62
63
64
if is_accelerate_available():
    import accelerate
    from accelerate.utils import set_module_tensor_to_device
    from accelerate.utils.versions import is_torch_version


65
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
66
    try:
Patrick von Platen's avatar
Patrick von Platen committed
67
68
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
69
70
71
72
73
74
75
76
77
78
79
80
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


81
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
82
    try:
83
84
85
86
87
88
89
90
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

91
92
93
94
95
96
97
98
99
100
101
102
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


103
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
104
    """
105
    Reads a checkpoint file, returning properly formatted errors if they arise.
106
107
    """
    try:
108
        if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant):
109
110
111
            return torch.load(checkpoint_file, map_location="cpu")
        else:
            return safetensors.torch.load_file(checkpoint_file, device="cpu")
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
128
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' "
129
130
131
132
133
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


134
135
136
137
138
139
140
def load_model_dict_into_meta(
    model,
    state_dict: OrderedDict,
    device: Optional[Union[str, torch.device]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    model_name_or_path: Optional[str] = None,
) -> List[str]:
141
142
143
    device = device or torch.device("cpu")
    dtype = dtype or torch.float32

144
145
    accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    unexpected_keys = []
    empty_state_dict = model.state_dict()
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            unexpected_keys.append(param_name)
            continue

        if empty_state_dict[param_name].shape != param.shape:
            model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
            raise ValueError(
                f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
            )

        if accepts_dtype:
            set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
        else:
            set_module_tensor_to_device(model, param_name, device, value=param)
    return unexpected_keys


166
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
167
168
169
170
171
172
173
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
174
    def load(module: torch.nn.Module, prefix: str = ""):
175
176
177
178
179
180
181
182
183
184
185
186
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs


187
class ModelMixin(torch.nn.Module, PushToHubMixin):
188
189
190
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
191
192
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
193

Steven Liu's avatar
Steven Liu committed
194
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
195
    """
196

197
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
198
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
199
    _supports_gradient_checkpointing = False
200
    _keys_to_ignore_on_load_unexpected = None
201
    _hf_peft_config_loaded = False
202

203
    def __init__(self):
204
205
        super().__init__()

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

224
225
226
227
228
229
230
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

231
    def enable_gradient_checkpointing(self) -> None:
232
        """
Steven Liu's avatar
Steven Liu committed
233
234
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
235
236
237
238
239
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

240
    def disable_gradient_checkpointing(self) -> None:
241
        """
Steven Liu's avatar
Steven Liu committed
242
243
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
244
245
246
247
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

248
249
250
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
251
252
253
254
255
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
256
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
257
258
259
260
261
262
263
264

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

265
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
266
        r"""
Steven Liu's avatar
Steven Liu committed
267
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
268

Steven Liu's avatar
Steven Liu committed
269
270
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
271

Steven Liu's avatar
Steven Liu committed
272
273
274
275
276
277
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
298
        """
299
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
300

301
    def disable_xformers_memory_efficient_attention(self) -> None:
302
        r"""
Steven Liu's avatar
Steven Liu committed
303
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
304
305
306
        """
        self.set_use_memory_efficient_attention_xformers(False)

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def add_adapter(self, adapter_config, adapter_name: str = "default") -> None:
        r"""
        Adds a new adapter to the current model for training. If no adapter name is passed, a default name is assigned
        to the adapter to follow the convention of the PEFT library.

        If you are not familiar with adapters and PEFT methods, we invite you to read more about them in the PEFT
        [documentation](https://huggingface.co/docs/peft).

        Args:
            adapter_config (`[~peft.PeftConfig]`):
                The configuration of the adapter to add; supported adapters are non-prefix tuning and adaption prompt
                methods.
            adapter_name (`str`, *optional*, defaults to `"default"`):
                The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
        """
        check_peft_version(min_version=MIN_PEFT_VERSION)

        from peft import PeftConfig, inject_adapter_in_model

        if not self._hf_peft_config_loaded:
            self._hf_peft_config_loaded = True
        elif adapter_name in self.peft_config:
            raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")

        if not isinstance(adapter_config, PeftConfig):
            raise ValueError(
                f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
            )

        # Unlike transformers, here we don't need to retrieve the name_or_path of the unet as the loading logic is
        # handled by the `load_lora_layers` or `LoraLoaderMixin`. Therefore we set it to `None` here.
        adapter_config.base_model_name_or_path = None
        inject_adapter_in_model(adapter_config, self, adapter_name)
        self.set_adapter(adapter_name)

    def set_adapter(self, adapter_name: Union[str, List[str]]) -> None:
        """
        Sets a specific adapter by forcing the model to only use that adapter and disables the other adapters.

        If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
        official documentation: https://huggingface.co/docs/peft

        Args:
            adapter_name (Union[str, List[str]])):
                The list of adapters to set or the adapter name in case of single adapter.
        """
        check_peft_version(min_version=MIN_PEFT_VERSION)

        if not self._hf_peft_config_loaded:
            raise ValueError("No adapter loaded. Please load an adapter first.")

        if isinstance(adapter_name, str):
            adapter_name = [adapter_name]

        missing = set(adapter_name) - set(self.peft_config)
        if len(missing) > 0:
            raise ValueError(
                f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)."
                f" current loaded adapters are: {list(self.peft_config.keys())}"
            )

        from peft.tuners.tuners_utils import BaseTunerLayer

        _adapters_has_been_set = False

        for _, module in self.named_modules():
            if isinstance(module, BaseTunerLayer):
                if hasattr(module, "set_adapter"):
                    module.set_adapter(adapter_name)
                # Previous versions of PEFT does not support multi-adapter inference
                elif not hasattr(module, "set_adapter") and len(adapter_name) != 1:
                    raise ValueError(
                        "You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT."
                        " `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`"
                    )
                else:
                    module.active_adapter = adapter_name
                _adapters_has_been_set = True

        if not _adapters_has_been_set:
            raise ValueError(
                "Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
            )

    def disable_adapters(self) -> None:
        r"""
        Disable all adapters attached to the model and fallback to inference with the base model only.

        If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
        official documentation: https://huggingface.co/docs/peft
        """
        check_peft_version(min_version=MIN_PEFT_VERSION)

        if not self._hf_peft_config_loaded:
            raise ValueError("No adapter loaded. Please load an adapter first.")

        from peft.tuners.tuners_utils import BaseTunerLayer

        for _, module in self.named_modules():
            if isinstance(module, BaseTunerLayer):
                if hasattr(module, "enable_adapters"):
                    module.enable_adapters(enabled=False)
                else:
                    # support for older PEFT versions
                    module.disable_adapters = True

    def enable_adapters(self) -> None:
        """
        Enable adapters that are attached to the model. The model will use `self.active_adapters()` to retrieve the
        list of adapters to enable.

        If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
        official documentation: https://huggingface.co/docs/peft
        """
        check_peft_version(min_version=MIN_PEFT_VERSION)

        if not self._hf_peft_config_loaded:
            raise ValueError("No adapter loaded. Please load an adapter first.")

        from peft.tuners.tuners_utils import BaseTunerLayer

        for _, module in self.named_modules():
            if isinstance(module, BaseTunerLayer):
                if hasattr(module, "enable_adapters"):
                    module.enable_adapters(enabled=True)
                else:
                    # support for older PEFT versions
                    module.disable_adapters = False

    def active_adapters(self) -> List[str]:
        """
        Gets the current list of active adapters of the model.

        If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
        official documentation: https://huggingface.co/docs/peft
        """
        check_peft_version(min_version=MIN_PEFT_VERSION)

        if not self._hf_peft_config_loaded:
            raise ValueError("No adapter loaded. Please load an adapter first.")

        from peft.tuners.tuners_utils import BaseTunerLayer

        for _, module in self.named_modules():
            if isinstance(module, BaseTunerLayer):
                return module.active_adapter

454
455
456
457
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
458
        save_function: Optional[Callable] = None,
459
        safe_serialization: bool = True,
460
        variant: Optional[str] = None,
461
462
        push_to_hub: bool = False,
        **kwargs,
463
464
    ):
        """
Steven Liu's avatar
Steven Liu committed
465
466
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
467
468
469

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
470
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
471
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
472
473
474
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
475
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
476
477
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
478
                `DIFFUSERS_SAVE_MODE`.
479
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
480
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
481
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
482
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
483
484
485
486
487
488
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
489
490
491
492
493
494
495
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

496
497
498
499
500
501
502
503
504
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
505
506
507
508
509
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
510
            model_to_save.save_config(save_directory)
511
512
513
514

        # Save the model
        state_dict = model_to_save.state_dict()

515
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
516
        weights_name = _add_variant(weights_name, variant)
517

518
        # Save the model
519
520
521
522
523
524
        if safe_serialization:
            safetensors.torch.save_file(
                state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
            )
        else:
            torch.save(state_dict, os.path.join(save_directory, weights_name))
525

526
        logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
527

528
529
530
531
532
533
534
535
536
        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

537
    @classmethod
538
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
539
        r"""
Steven Liu's avatar
Steven Liu committed
540
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
541

Steven Liu's avatar
Steven Liu committed
542
543
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
544
545
546
547
548

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
549
550
551
552
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
553
554

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
555
556
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
557
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
558
559
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
560
561
562
563
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
564
565
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
566
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
567
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
568
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
569
            output_loading_info (`bool`, *optional*, defaults to `False`):
570
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
571
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
572
573
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
574
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
575
576
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
577
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
578
579
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
580
581
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
582
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
583
                The subfolder location of a model file within a larger model repository on the Hub or locally.
584
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
585
586
587
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
588
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
589
590
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
591
592
                same device.

Steven Liu's avatar
Steven Liu committed
593
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
594
595
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
596
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
597
598
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
599
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
600
                The path to offload weights if `device_map` contains the value `"disk"`.
601
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
602
603
604
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
605
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
606
607
608
609
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
610
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
611
612
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
613
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
614
615
616
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
617
618
619

        <Tip>

Steven Liu's avatar
Steven Liu committed
620
621
622
623
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
624
625
626

        </Tip>

Steven Liu's avatar
Steven Liu committed
627
        Example:
628

Steven Liu's avatar
Steven Liu committed
629
630
        ```py
        from diffusers import UNet2DConditionModel
631

Steven Liu's avatar
Steven Liu committed
632
633
634
635
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
636

Steven Liu's avatar
Steven Liu committed
637
638
639
640
641
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
642
        """
643
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
644
645
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
646
        from_flax = kwargs.pop("from_flax", False)
647
648
649
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
650
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
651
652
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
653
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
654
        subfolder = kwargs.pop("subfolder", None)
655
        device_map = kwargs.pop("device_map", None)
656
657
658
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
659
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
660
        variant = kwargs.pop("variant", None)
661
662
663
664
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
665
            use_safetensors = True
666
            allow_pickle = True
667

668
669
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
670
            logger.warning(
671
672
673
674
675
676
677
678
679
680
681
682
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

683
684
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
685
686
687
688
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
689

690
691
692
693
694
695
696
697
698
699
700
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
701

702
703
704
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

705
706
707
708
709
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            use_auth_token=use_auth_token,
            revision=revision,
            subfolder=subfolder,
            device_map=device_map,
725
726
727
            max_memory=max_memory,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
728
729
730
731
732
            user_agent=user_agent,
            **kwargs,
        )

        # load model
733
        model_file = None
734
        if from_flax:
735
            model_file = _get_model_file(
736
                pretrained_model_name_or_path,
737
                weights_name=FLAX_WEIGHTS_NAME,
738
739
740
741
742
743
744
745
746
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
747
                commit_hash=commit_hash,
748
749
            )
            model = cls.from_config(config, **unused_kwargs)
750

751
752
753
754
755
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
756
            if use_safetensors:
757
                try:
758
                    model_file = _get_model_file(
759
                        pretrained_model_name_or_path,
760
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
761
762
763
764
765
766
767
768
769
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
770
                        commit_hash=commit_hash,
771
                    )
772
773
774
                except IOError as e:
                    if not allow_pickle:
                        raise e
775
776
                    pass
            if model_file is None:
777
                model_file = _get_model_file(
778
                    pretrained_model_name_or_path,
779
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
780
781
782
783
784
785
786
787
788
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
789
                    commit_hash=commit_hash,
790
791
792
793
794
795
796
797
798
799
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
800
                    state_dict = load_state_dict(model_file, variant=variant)
801
                    model._convert_deprecated_attention_blocks(state_dict)
802
                    # move the params from meta device to cpu
803
804
805
806
807
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
808
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
809
810
                            " those weights or else make sure your checkpoint file is correct."
                        )
811

812
813
814
815
816
817
818
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
                    )
819
820
821
822
823
824
825
826
827
828

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        logger.warn(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

829
830
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
831
                    # by default the device_map is None and the weights are loaded on the CPU
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
                            logger.warn(
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
873
874
875
876
877
878
879
880

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
881
                model = cls.from_config(config, **unused_kwargs)
882

883
                state_dict = load_state_dict(model_file, variant=variant)
884
                model._convert_deprecated_attention_blocks(state_dict)
885

886
887
888
889
890
891
892
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
893

894
895
896
897
898
899
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
900
901
902
903
904
905
906
907
908
909
910
911
912

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
913
914
915
916
917
918
919
920
            return model, loading_info

        return model

    @classmethod
    def _load_pretrained_model(
        cls,
        model,
921
        state_dict: OrderedDict,
922
        resolved_archive_file,
923
924
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
925
926
927
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
928
        loaded_keys = list(state_dict.keys())
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
1018
1019
1020
1021

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

    @property
1022
    def device(self) -> torch.device:
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
1038
        Get number of (trainable or non-embedding) parameters in the module.
1039
1040
1041

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1042
                Whether or not to return only the number of trainable parameters.
1043
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1044
                Whether or not to return only the number of non-embedding parameters.
1045
1046
1047

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        """

        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight"
                for name, module_type in self.named_modules()
                if isinstance(module_type, torch.nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
1073

1074
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
1117

1118
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

1145
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1146
1147
        deprecated_attention_block_modules = []

1148
        def recursive_find_attn_block(module) -> None:
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn