modeling_utils.py 75 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import itertools
20
import json
21
import os
22
import re
23
from collections import OrderedDict
24
from functools import partial, wraps
25
from pathlib import Path
Aryan's avatar
Aryan committed
26
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
27

28
import safetensors
29
import torch
Marc Sun's avatar
Marc Sun committed
30
from huggingface_hub import DDUFEntry, create_repo, split_torch_state_dict_into_shards
31
from huggingface_hub.utils import validate_hf_hub_args
32
from torch import Tensor, nn
33

34
from .. import __version__
Aryan's avatar
Aryan committed
35
from ..hooks import apply_layerwise_casting
36
37
from ..quantizers import DiffusersAutoQuantizer, DiffusersQuantizer
from ..quantizers.quantization_config import QuantizationMethod
38
from ..utils import (
39
    CONFIG_NAME,
40
    FLAX_WEIGHTS_NAME,
41
    SAFE_WEIGHTS_INDEX_NAME,
42
    SAFETENSORS_WEIGHTS_NAME,
43
    WEIGHTS_INDEX_NAME,
44
    WEIGHTS_NAME,
45
    _add_variant,
46
    _get_checkpoint_shard_files,
47
    _get_model_file,
48
    deprecate,
49
    is_accelerate_available,
50
51
    is_bitsandbytes_available,
    is_bitsandbytes_version,
Aryan's avatar
Aryan committed
52
    is_peft_available,
53
54
55
    is_torch_version,
    logging,
)
56
57
58
59
60
from ..utils.hub_utils import (
    PushToHubMixin,
    load_or_create_model_card,
    populate_model_card,
)
61
62
from .model_loading_utils import (
    _determine_device_map,
63
    _fetch_index_file,
64
    _fetch_index_file_legacy,
65
    _load_state_dict_into_model,
66
    _merge_sharded_checkpoints,
67
68
69
    load_model_dict_into_meta,
    load_state_dict,
)
70
71
72
73


logger = logging.get_logger(__name__)

74
75
_REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}")

76

77
78
79
80
81
82
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


83
84
85
86
if is_accelerate_available():
    import accelerate


87
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
88
    try:
Patrick von Platen's avatar
Patrick von Platen committed
89
90
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
91
92
93
94
95
96
97
98
99
100
101
102
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


103
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
104
105
106
    """
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
    """
Aryan's avatar
Aryan committed
107
108
109
110
111
112
113
114
115
116
117
    # 1. Check if we have attached any dtype modifying hooks (eg. layerwise casting)
    if isinstance(parameter, nn.Module):
        for name, submodule in parameter.named_modules():
            if not hasattr(submodule, "_diffusers_hook"):
                continue
            registry = submodule._diffusers_hook
            hook = registry.get_hook("layerwise_casting")
            if hook is not None:
                return hook.compute_dtype

    # 2. If no dtype modifying hooks are attached, return the dtype of the first floating point parameter/buffer
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    last_dtype = None
    for param in parameter.parameters():
        last_dtype = param.dtype
        if param.is_floating_point():
            return param.dtype

    for buffer in parameter.buffers():
        last_dtype = buffer.dtype
        if buffer.is_floating_point():
            return buffer.dtype

    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype

    # For nn.DataParallel compatibility in PyTorch > 1.5
    def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
        tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
        return tuples

    gen = parameter._named_members(get_members_fn=find_tensor_attributes)
    last_tuple = None
    for tuple in gen:
        last_tuple = tuple
        if tuple[1].is_floating_point():
            return tuple[1].dtype

    if last_tuple is not None:
        # fallback to the last dtype
        return last_tuple[1].dtype
148
149


150
class ModelMixin(torch.nn.Module, PushToHubMixin):
151
152
153
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
154
155
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
156

Steven Liu's avatar
Steven Liu committed
157
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
158
    """
159

160
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
161
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
162
    _supports_gradient_checkpointing = False
163
    _keys_to_ignore_on_load_unexpected = None
164
    _no_split_modules = None
165
    _keep_in_fp32_modules = None
Aryan's avatar
Aryan committed
166
    _skip_layerwise_casting_patterns = None
167

168
    def __init__(self):
169
170
        super().__init__()

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

189
190
191
192
193
194
195
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

196
    def enable_gradient_checkpointing(self) -> None:
197
        """
Steven Liu's avatar
Steven Liu committed
198
199
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
200
201
202
203
204
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

205
    def disable_gradient_checkpointing(self) -> None:
206
        """
Steven Liu's avatar
Steven Liu committed
207
208
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
209
210
211
212
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def set_use_npu_flash_attention(self, valid: bool) -> None:
        r"""
        Set the switch for the npu flash attention.
        """

        def fn_recursive_set_npu_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_npu_flash_attention"):
                module.set_use_npu_flash_attention(valid)

            for child in module.children():
                fn_recursive_set_npu_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_npu_flash_attention(module)

    def enable_npu_flash_attention(self) -> None:
        r"""
        Enable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(True)

    def disable_npu_flash_attention(self) -> None:
        r"""
        disable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(False)

Juan Acevedo's avatar
Juan Acevedo committed
243
    def set_use_xla_flash_attention(
244
        self, use_xla_flash_attention: bool, partition_spec: Optional[Callable] = None, **kwargs
Juan Acevedo's avatar
Juan Acevedo committed
245
246
247
248
249
250
    ) -> None:
        # Recursively walk through all the children.
        # Any children which exposes the set_use_xla_flash_attention method
        # gets the message
        def fn_recursive_set_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_xla_flash_attention"):
251
                module.set_use_xla_flash_attention(use_xla_flash_attention, partition_spec, **kwargs)
Juan Acevedo's avatar
Juan Acevedo committed
252
253
254
255
256
257
258
259

            for child in module.children():
                fn_recursive_set_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_flash_attention(module)

260
    def enable_xla_flash_attention(self, partition_spec: Optional[Callable] = None, **kwargs):
Juan Acevedo's avatar
Juan Acevedo committed
261
262
263
        r"""
        Enable the flash attention pallals kernel for torch_xla.
        """
264
        self.set_use_xla_flash_attention(True, partition_spec, **kwargs)
Juan Acevedo's avatar
Juan Acevedo committed
265
266
267
268
269
270
271

    def disable_xla_flash_attention(self):
        r"""
        Disable the flash attention pallals kernel for torch_xla.
        """
        self.set_use_xla_flash_attention(False)

272
273
274
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
275
276
277
278
279
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
280
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
281
282
283
284
285
286
287
288

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

289
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
290
        r"""
Steven Liu's avatar
Steven Liu committed
291
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
292

Steven Liu's avatar
Steven Liu committed
293
294
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
295

Steven Liu's avatar
Steven Liu committed
296
297
298
299
300
301
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
322
        """
323
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
324

325
    def disable_xformers_memory_efficient_attention(self) -> None:
326
        r"""
Steven Liu's avatar
Steven Liu committed
327
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
328
329
330
        """
        self.set_use_memory_efficient_attention_xformers(False)

Aryan's avatar
Aryan committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    def enable_layerwise_casting(
        self,
        storage_dtype: torch.dtype = torch.float8_e4m3fn,
        compute_dtype: Optional[torch.dtype] = None,
        skip_modules_pattern: Optional[Tuple[str, ...]] = None,
        skip_modules_classes: Optional[Tuple[Type[torch.nn.Module], ...]] = None,
        non_blocking: bool = False,
    ) -> None:
        r"""
        Activates layerwise casting for the current model.

        Layerwise casting is a technique that casts the model weights to a lower precision dtype for storage but
        upcasts them on-the-fly to a higher precision dtype for computation. This process can significantly reduce the
        memory footprint from model weights, but may lead to some quality degradation in the outputs. Most degradations
        are negligible, mostly stemming from weight casting in normalization and modulation layers.

        By default, most models in diffusers set the `_skip_layerwise_casting_patterns` attribute to ignore patch
        embedding, positional embedding and normalization layers. This is because these layers are most likely
        precision-critical for quality. If you wish to change this behavior, you can set the
        `_skip_layerwise_casting_patterns` attribute to `None`, or call
        [`~hooks.layerwise_casting.apply_layerwise_casting`] with custom arguments.

        Example:
            Using [`~models.ModelMixin.enable_layerwise_casting`]:

            ```python
            >>> from diffusers import CogVideoXTransformer3DModel

            >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
            ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
            ... )

            >>> # Enable layerwise casting via the model, which ignores certain modules by default
            >>> transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
            ```

        Args:
            storage_dtype (`torch.dtype`):
                The dtype to which the model should be cast for storage.
            compute_dtype (`torch.dtype`):
                The dtype to which the model weights should be cast during the forward pass.
            skip_modules_pattern (`Tuple[str, ...]`, *optional*):
                A list of patterns to match the names of the modules to skip during the layerwise casting process. If
                set to `None`, default skip patterns are used to ignore certain internal layers of modules and PEFT
                layers.
            skip_modules_classes (`Tuple[Type[torch.nn.Module], ...]`, *optional*):
                A list of module classes to skip during the layerwise casting process.
            non_blocking (`bool`, *optional*, defaults to `False`):
                If `True`, the weight casting operations are non-blocking.
        """

        user_provided_patterns = True
        if skip_modules_pattern is None:
            from ..hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN

            skip_modules_pattern = DEFAULT_SKIP_MODULES_PATTERN
            user_provided_patterns = False
        if self._keep_in_fp32_modules is not None:
            skip_modules_pattern += tuple(self._keep_in_fp32_modules)
        if self._skip_layerwise_casting_patterns is not None:
            skip_modules_pattern += tuple(self._skip_layerwise_casting_patterns)
        skip_modules_pattern = tuple(set(skip_modules_pattern))

        if is_peft_available() and not user_provided_patterns:
            # By default, we want to skip all peft layers because they have a very low memory footprint.
            # If users want to apply layerwise casting on peft layers as well, they can utilize the
            # `~diffusers.hooks.layerwise_casting.apply_layerwise_casting` function which provides
            # them with more flexibility and control.

            from peft.tuners.loha.layer import LoHaLayer
            from peft.tuners.lokr.layer import LoKrLayer
            from peft.tuners.lora.layer import LoraLayer

            for layer in (LoHaLayer, LoKrLayer, LoraLayer):
                skip_modules_pattern += tuple(layer.adapter_layer_names)

        if compute_dtype is None:
            logger.info("`compute_dtype` not provided when enabling layerwise casting. Using dtype of the model.")
            compute_dtype = self.dtype

        apply_layerwise_casting(
            self, storage_dtype, compute_dtype, skip_modules_pattern, skip_modules_classes, non_blocking
        )

415
416
417
418
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
419
        save_function: Optional[Callable] = None,
420
        safe_serialization: bool = True,
421
        variant: Optional[str] = None,
422
        max_shard_size: Union[int, str] = "10GB",
423
424
        push_to_hub: bool = False,
        **kwargs,
425
426
    ):
        """
Steven Liu's avatar
Steven Liu committed
427
428
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
429
430
431

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
432
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
433
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
434
435
436
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
437
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
438
439
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
440
                `DIFFUSERS_SAVE_MODE`.
441
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
442
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
443
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
444
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
445
            max_shard_size (`int` or `str`, defaults to `"10GB"`):
446
447
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
448
449
450
451
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
452
453
454
455
456
457
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
458
459
460
461
462
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

463
464
465
466
467
468
469
470
471
472
473
474
475
        hf_quantizer = getattr(self, "hf_quantizer", None)
        if hf_quantizer is not None:
            quantization_serializable = (
                hf_quantizer is not None
                and isinstance(hf_quantizer, DiffusersQuantizer)
                and hf_quantizer.is_serializable
            )
            if not quantization_serializable:
                raise ValueError(
                    f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                    " the logger on the traceback to understand the reason why the quantized model is not serializable."
                )

476
477
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
        weights_name = _add_variant(weights_name, variant)
478
479
480
        weights_name_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(
            ".safetensors", "{suffix}.safetensors"
        )
481

482
483
        os.makedirs(save_directory, exist_ok=True)

484
485
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
486
            private = kwargs.pop("private", None)
487
488
489
490
491
492
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
493
494
495
496
497
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
498
            model_to_save.save_config(save_directory)
499
500
501
502
503

        # Save the model
        state_dict = model_to_save.state_dict()

        # Save the model
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        state_dict_split = split_torch_state_dict_into_shards(
            state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern
        )

        # Clean the folder from a previous save
        if is_main_process:
            for filename in os.listdir(save_directory):
                if filename in state_dict_split.filename_to_tensors.keys():
                    continue
                full_filename = os.path.join(save_directory, filename)
                if not os.path.isfile(full_filename):
                    continue
                weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "")
                weights_without_ext = weights_without_ext.replace("{suffix}", "")
                filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "")
                # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
                if (
                    filename.startswith(weights_without_ext)
                    and _REGEX_SHARD.fullmatch(filename_without_ext) is not None
                ):
                    os.remove(full_filename)

        for filename, tensors in state_dict_split.filename_to_tensors.items():
            shard = {tensor: state_dict[tensor] for tensor in tensors}
            filepath = os.path.join(save_directory, filename)
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"})
            else:
                torch.save(shard, filepath)

        if state_dict_split.is_sharded:
            index = {
                "metadata": state_dict_split.metadata,
                "weight_map": state_dict_split.tensor_to_filename,
            }
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
551
552
            )
        else:
553
554
            path_to_weights = os.path.join(save_directory, weights_name)
            logger.info(f"Model weights saved in {path_to_weights}")
555

556
        if push_to_hub:
557
558
559
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
560
            model_card.save(Path(save_directory, "README.md").as_posix())
561

562
563
564
565
566
567
568
569
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

570
571
572
573
574
575
576
577
578
579
580
581
    def dequantize(self):
        """
        Potentially dequantize the model in case it has been quantized by a quantization method that support
        dequantization.
        """
        hf_quantizer = getattr(self, "hf_quantizer", None)

        if hf_quantizer is None:
            raise ValueError("You need to first quantize your model in order to dequantize it")

        return hf_quantizer.dequantize(self)

582
    @classmethod
583
    @validate_hf_hub_args
584
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
585
        r"""
Steven Liu's avatar
Steven Liu committed
586
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
587

Steven Liu's avatar
Steven Liu committed
588
589
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
590
591
592
593
594

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
595
596
597
598
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
599
600

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
601
602
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
603
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
604
605
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
606
607
608
609
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
610
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
611
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
612
            output_loading_info (`bool`, *optional*, defaults to `False`):
613
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
614
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
615
616
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
617
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
618
619
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
620
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
621
622
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
623
624
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
625
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
626
                The subfolder location of a model file within a larger model repository on the Hub or locally.
627
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
628
629
630
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
631
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
632
633
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
634
                same device. Defaults to `None`, meaning that the model will be loaded on CPU.
635

Steven Liu's avatar
Steven Liu committed
636
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
637
638
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
639
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
640
641
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
642
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
643
                The path to offload weights if `device_map` contains the value `"disk"`.
644
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
645
646
647
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
648
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
649
650
651
652
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
653
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
654
655
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
656
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
657
658
659
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
660
661
662
            disable_mmap ('bool', *optional*, defaults to 'False'):
                Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
                is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
663
664
665

        <Tip>

Steven Liu's avatar
Steven Liu committed
666
667
668
669
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
670
671
672

        </Tip>

Steven Liu's avatar
Steven Liu committed
673
        Example:
674

Steven Liu's avatar
Steven Liu committed
675
676
        ```py
        from diffusers import UNet2DConditionModel
677

Steven Liu's avatar
Steven Liu committed
678
679
680
681
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
682

Steven Liu's avatar
Steven Liu committed
683
684
685
686
687
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
688
        """
689
        cache_dir = kwargs.pop("cache_dir", None)
690
691
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
692
        from_flax = kwargs.pop("from_flax", False)
693
694
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
695
696
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
697
        revision = kwargs.pop("revision", None)
698
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
699
        subfolder = kwargs.pop("subfolder", None)
700
        device_map = kwargs.pop("device_map", None)
701
702
703
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
704
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
705
        variant = kwargs.pop("variant", None)
706
        use_safetensors = kwargs.pop("use_safetensors", None)
707
        quantization_config = kwargs.pop("quantization_config", None)
Marc Sun's avatar
Marc Sun committed
708
        dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None)
709
        disable_mmap = kwargs.pop("disable_mmap", False)
710
711
712

        allow_pickle = False
        if use_safetensors is None:
713
            use_safetensors = True
714
            allow_pickle = True
715

716
717
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
718
            logger.warning(
719
720
721
722
723
724
725
726
727
728
729
730
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

731
732
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
733
734
735
736
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
737

738
739
740
741
742
743
744
745
746
747
748
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
749

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if device_map is not None and not is_torch_version(">=", "1.10"):
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.")

780
781
782
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

783
784
785
786
787
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
788

789
790
791
792
793
794
795
796
797
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
798
            token=token,
799
800
801
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
Marc Sun's avatar
Marc Sun committed
802
            dduf_entries=dduf_entries,
803
804
            **kwargs,
        )
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        # no in-place modification of the original config.
        config = copy.deepcopy(config)

        # determine initial quantization config.
        #######################################
        pre_quantized = "quantization_config" in config and config["quantization_config"] is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config["quantization_config"] = DiffusersAutoQuantizer.merge_quantization_configs(
                    config["quantization_config"], quantization_config
                )
            else:
                config["quantization_config"] = quantization_config
            hf_quantizer = DiffusersAutoQuantizer.from_config(
                config["quantization_config"], pre_quantized=pre_quantized
            )
        else:
            hf_quantizer = None

        if hf_quantizer is not None:
825
            if device_map is not None:
826
                raise NotImplementedError(
827
                    "Currently, providing `device_map` is not supported for quantized models. Providing `device_map` as an input will be added in the future."
828
                )
Aryan's avatar
Aryan committed
829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
            hf_quantizer.validate_environment(torch_dtype=torch_dtype, from_flax=from_flax, device_map=device_map)
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)

            # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
            user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `hf_quantizer` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False or None when using quantization.")

        # Check if `_keep_in_fp32_modules` is not None
        use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
            (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
        )
        if use_keep_in_fp32_modules:
            keep_in_fp32_modules = cls._keep_in_fp32_modules
            if not isinstance(keep_in_fp32_modules, list):
                keep_in_fp32_modules = [keep_in_fp32_modules]

            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `_keep_in_fp32_modules` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False when `keep_in_fp32_modules` is True.")
        else:
            keep_in_fp32_modules = []
        #######################################
860

861
862
863
864
        # Determine if we're loading from a directory of sharded checkpoints.
        is_sharded = False
        index_file = None
        is_local = os.path.isdir(pretrained_model_name_or_path)
865
866
867
868
869
870
871
872
873
874
875
876
877
878
        index_file_kwargs = {
            "is_local": is_local,
            "pretrained_model_name_or_path": pretrained_model_name_or_path,
            "subfolder": subfolder or "",
            "use_safetensors": use_safetensors,
            "cache_dir": cache_dir,
            "variant": variant,
            "force_download": force_download,
            "proxies": proxies,
            "local_files_only": local_files_only,
            "token": token,
            "revision": revision,
            "user_agent": user_agent,
            "commit_hash": commit_hash,
Marc Sun's avatar
Marc Sun committed
879
            "dduf_entries": dduf_entries,
880
881
882
883
884
885
        }
        index_file = _fetch_index_file(**index_file_kwargs)
        # In case the index file was not found we still have to consider the legacy format.
        # this becomes applicable when the variant is not None.
        if variant is not None and (index_file is None or not os.path.exists(index_file)):
            index_file = _fetch_index_file_legacy(**index_file_kwargs)
Marc Sun's avatar
Marc Sun committed
886
        if index_file is not None and (dduf_entries or index_file.is_file()):
887
888
889
890
891
            is_sharded = True

        if is_sharded and from_flax:
            raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.")

892
        # load model
893
        model_file = None
894
        if from_flax:
895
            model_file = _get_model_file(
896
                pretrained_model_name_or_path,
897
                weights_name=FLAX_WEIGHTS_NAME,
898
899
900
901
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
902
                token=token,
903
904
905
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
906
                commit_hash=commit_hash,
907
908
            )
            model = cls.from_config(config, **unused_kwargs)
909

910
911
912
913
914
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
Marc Sun's avatar
Marc Sun committed
915
            # in the case it is sharded, we have already the index
916
917
918
919
920
921
922
923
924
925
926
            if is_sharded:
                sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files(
                    pretrained_model_name_or_path,
                    index_file,
                    cache_dir=cache_dir,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder or "",
Marc Sun's avatar
Marc Sun committed
927
                    dduf_entries=dduf_entries,
928
                )
929
                # TODO: https://github.com/huggingface/diffusers/issues/10013
Marc Sun's avatar
Marc Sun committed
930
931
932
933
                if hf_quantizer is not None or dduf_entries:
                    model_file = _merge_sharded_checkpoints(
                        sharded_ckpt_cached_folder, sharded_metadata, dduf_entries=dduf_entries
                    )
934
935
                    logger.info("Merged sharded checkpoints as `hf_quantizer` is not None.")
                    is_sharded = False
936
937

            elif use_safetensors and not is_sharded:
938
                try:
939
                    model_file = _get_model_file(
940
                        pretrained_model_name_or_path,
941
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
942
943
944
945
                        cache_dir=cache_dir,
                        force_download=force_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
946
                        token=token,
947
948
949
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
950
                        commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
951
                        dduf_entries=dduf_entries,
952
                    )
953

954
                except IOError as e:
955
                    logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
956
                    if not allow_pickle:
957
958
959
960
961
962
                        raise
                    logger.warning(
                        "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
                    )

            if model_file is None and not is_sharded:
963
                model_file = _get_model_file(
964
                    pretrained_model_name_or_path,
965
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
966
967
968
969
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
970
                    token=token,
971
972
973
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
974
                    commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
975
                    dduf_entries=dduf_entries,
976
977
978
979
980
981
982
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

983
984
985
986
987
                if hf_quantizer is not None:
                    hf_quantizer.preprocess_model(
                        model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
                    )

988
                # if device_map is None, load the state dict and move the params from meta device to the cpu
989
                if device_map is None and not is_sharded:
990
991
992
993
994
                    # `torch.cuda.current_device()` is fine here when `hf_quantizer` is not None.
                    # It would error out during the `validate_environment()` call above in the absence of cuda.
                    if hf_quantizer is None:
                        param_device = "cpu"
                    # TODO (sayakpaul,  SunMarc): remove this after model loading refactor
Aryan's avatar
Aryan committed
995
                    else:
996
                        param_device = torch.device(torch.cuda.current_device())
Marc Sun's avatar
Marc Sun committed
997
998
999
                    state_dict = load_state_dict(
                        model_file, variant=variant, dduf_entries=dduf_entries, disable_mmap=disable_mmap
                    )
1000
                    model._convert_deprecated_attention_blocks(state_dict)
1001

1002
                    # move the params from meta device to cpu
1003
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
1004
1005
                    if hf_quantizer is not None:
                        missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix="")
1006
1007
1008
1009
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1010
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
1011
1012
                            " those weights or else make sure your checkpoint file is correct."
                        )
1013

hlky's avatar
hlky committed
1014
1015
                    named_buffers = model.named_buffers()

1016
1017
1018
1019
1020
1021
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
1022
1023
                        hf_quantizer=hf_quantizer,
                        keep_in_fp32_modules=keep_in_fp32_modules,
hlky's avatar
hlky committed
1024
                        named_buffers=named_buffers,
1025
                    )
1026
1027
1028
1029
1030
1031

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
1032
                        logger.warning(
1033
1034
1035
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

1036
1037
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1038
                    # by default the device_map is None and the weights are loaded on the CPU
1039
1040
1041
                    device_map = _determine_device_map(
                        model, device_map, max_memory, torch_dtype, keep_in_fp32_modules, hf_quantizer
                    )
1042
1043
1044
                    if device_map is None and is_sharded:
                        # we load the parameters on the cpu
                        device_map = {"": "cpu"}
1045
1046
1047
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
1048
                            model_file if not is_sharded else index_file,
1049
1050
1051
1052
1053
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
1054
                            strict=True,
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
1067
                            logger.warning(
1068
1069
1070
1071
1072
1073
1074
1075
1076
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
1077
                                model_file if not is_sharded else index_file,
1078
1079
1080
1081
1082
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
1083
                                strict=True,
1084
1085
1086
1087
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
1088
1089
1090
1091
1092
1093
1094
1095

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
1096
                model = cls.from_config(config, **unused_kwargs)
1097

Marc Sun's avatar
Marc Sun committed
1098
1099
1100
                state_dict = load_state_dict(
                    model_file, variant=variant, dduf_entries=dduf_entries, disable_mmap=disable_mmap
                )
1101
                model._convert_deprecated_attention_blocks(state_dict)
1102

1103
1104
1105
1106
1107
1108
1109
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
1110

1111
1112
1113
1114
1115
1116
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
1117

1118
1119
1120
1121
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer

1122
1123
1124
1125
        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
1126
1127
1128
        # When using `use_keep_in_fp32_modules` if we do a global `to()` here, then we will
        # completely lose the effectivity of `use_keep_in_fp32_modules`.
        elif torch_dtype is not None and hf_quantizer is None and not use_keep_in_fp32_modules:
1129
1130
            model = model.to(torch_dtype)

1131
1132
1133
1134
1135
1136
        if hf_quantizer is not None:
            # We also make sure to purge `_pre_quantization_dtype` when we serialize
            # the model config because `_pre_quantization_dtype` is `torch.dtype`, not JSON serializable.
            model.register_to_config(_name_or_path=pretrained_model_name_or_path, _pre_quantization_dtype=torch_dtype)
        else:
            model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1137
1138
1139
1140

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
1141
1142
1143
1144
            return model, loading_info

        return model

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    # Adapted from `transformers`.
    @wraps(torch.nn.Module.cuda)
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 4-bit or 8-bit with BNB
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "Calling `cuda()` is not supported for `8-bit` quantized models. "
                    " Please use the model as it is, since the model has already been set to the correct devices."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `cuda()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
        return super().cuda(*args, **kwargs)

    # Adapted from `transformers`.
    @wraps(torch.nn.Module.to)
    def to(self, *args, **kwargs):
        dtype_present_in_args = "dtype" in kwargs

        if not dtype_present_in_args:
            for arg in args:
                if isinstance(arg, torch.dtype):
                    dtype_present_in_args = True
                    break

1173
        if getattr(self, "is_quantized", False):
1174
1175
            if dtype_present_in_args:
                raise ValueError(
1176
1177
                    "Casting a quantized model to a new `dtype` is unsupported. To set the dtype of unquantized layers, please "
                    "use the `torch_dtype` argument when loading the model using `from_pretrained` or `from_single_file`"
1178
1179
                )

1180
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "`.to` is not supported for `8-bit` bitsandbytes models. Please use the model as it is, since the"
                    " model has already been set to the correct devices and casted to the correct `dtype`."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `to()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
        return super().to(*args, **kwargs)

    # Taken from `transformers`.
    def half(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().half(*args)

    # Taken from `transformers`.
    def float(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().float(*args)

1215
1216
1217
1218
    @classmethod
    def _load_pretrained_model(
        cls,
        model,
1219
        state_dict: OrderedDict,
1220
        resolved_archive_file,
1221
1222
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
1223
1224
1225
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
1226
        loaded_keys = list(state_dict.keys())
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
1316
1317
1318

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

1319
1320
1321
1322
1323
1324
1325
1326
1327
    @classmethod
    def _get_signature_keys(cls, obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
        expected_modules = set(required_parameters.keys()) - {"self"}

        return expected_modules, optional_parameters

1328
1329
1330
    # Adapted from `transformers` modeling_utils.py
    def _get_no_split_modules(self, device_map: str):
        """
1331
        Get the modules of the model that should not be split when using device_map. We iterate through the modules to
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, ModelMixin):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
        return list(_no_split_modules)

1358
    @property
1359
    def device(self) -> torch.device:
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
1375
        Get number of (trainable or non-embedding) parameters in the module.
1376
1377
1378

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1379
                Whether or not to return only the number of trainable parameters.
1380
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1381
                Whether or not to return only the number of non-embedding parameters.
1382
1383
1384

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
1396
        """
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)

        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
                )
1407
1408
1409

        if exclude_embeddings:
            embedding_param_names = [
1410
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
1411
            ]
1412
            total_parameters = [
1413
1414
1415
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
            total_parameters = list(self.parameters())

        total_numel = []

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    if hasattr(param, "element_size"):
                        num_bytes = param.element_size()
                    elif hasattr(param, "quant_storage"):
                        num_bytes = param.quant_storage.itemsize
                    else:
                        num_bytes = 1
                    total_numel.append(param.numel() * 2 * num_bytes)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)

    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem
1454

1455
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
1498

1499
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

1526
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1527
1528
        deprecated_attention_block_modules = []

1529
        def recursive_find_attn_block(module) -> None:
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558


class LegacyModelMixin(ModelMixin):
    r"""
    A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
    pipeline-specific classes (like `DiTTransformer2DModel`).
    """

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
1559
        # To prevent dependency import problem.
1560
1561
        from .model_loading_utils import _fetch_remapped_cls_from_config

1562
1563
1564
        # Create a copy of the kwargs so that we don't mess with the keyword arguments in the downstream calls.
        kwargs_copy = kwargs.copy()

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)

        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }

        # load config
        config, _, _ = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            **kwargs,
        )
        # resolve remapping
        remapped_class = _fetch_remapped_cls_from_config(config, cls)

1600
        return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy)