modeling_utils.py 68.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import copy
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import itertools
20
import json
21
import os
22
import re
23
from collections import OrderedDict
24
from functools import partial, wraps
25
from pathlib import Path
26
from typing import Any, Callable, List, Optional, Tuple, Union
27

28
import safetensors
29
import torch
30
from huggingface_hub import create_repo, split_torch_state_dict_into_shards
31
from huggingface_hub.utils import validate_hf_hub_args
32
from torch import Tensor, nn
33

34
from .. import __version__
35
36
from ..quantizers import DiffusersAutoQuantizer, DiffusersQuantizer
from ..quantizers.quantization_config import QuantizationMethod
37
from ..utils import (
38
    CONFIG_NAME,
39
    FLAX_WEIGHTS_NAME,
40
    SAFE_WEIGHTS_INDEX_NAME,
41
    SAFETENSORS_WEIGHTS_NAME,
42
    WEIGHTS_INDEX_NAME,
43
    WEIGHTS_NAME,
44
    _add_variant,
45
    _get_checkpoint_shard_files,
46
    _get_model_file,
47
    deprecate,
48
    is_accelerate_available,
49
50
    is_bitsandbytes_available,
    is_bitsandbytes_version,
51
52
53
    is_torch_version,
    logging,
)
54
55
56
57
58
from ..utils.hub_utils import (
    PushToHubMixin,
    load_or_create_model_card,
    populate_model_card,
)
59
60
from .model_loading_utils import (
    _determine_device_map,
61
    _fetch_index_file,
62
    _fetch_index_file_legacy,
63
    _load_state_dict_into_model,
64
    _merge_sharded_checkpoints,
65
66
67
    load_model_dict_into_meta,
    load_state_dict,
)
68
69
70
71


logger = logging.get_logger(__name__)

72
73
_REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}")

74

75
76
77
78
79
80
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


81
82
83
84
if is_accelerate_available():
    import accelerate


85
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
86
    try:
Patrick von Platen's avatar
Patrick von Platen committed
87
88
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
89
90
91
92
93
94
95
96
97
98
99
100
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


101
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
102
    try:
YiYi Xu's avatar
YiYi Xu committed
103
        return next(parameter.parameters()).dtype
104
    except StopIteration:
YiYi Xu's avatar
YiYi Xu committed
105
106
107
108
109
110
111
112
113
114
115
116
        try:
            return next(parameter.buffers()).dtype
        except StopIteration:
            # For torch.nn.DataParallel compatibility in PyTorch 1.5

            def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
                tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
                return tuples

            gen = parameter._named_members(get_members_fn=find_tensor_attributes)
            first_tuple = next(gen)
            return first_tuple[1].dtype
117
118


119
class ModelMixin(torch.nn.Module, PushToHubMixin):
120
121
122
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
123
124
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
125

Steven Liu's avatar
Steven Liu committed
126
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
127
    """
128

129
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
130
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
131
    _supports_gradient_checkpointing = False
132
    _keys_to_ignore_on_load_unexpected = None
133
    _no_split_modules = None
134
    _keep_in_fp32_modules = None
135

136
    def __init__(self):
137
138
        super().__init__()

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

157
158
159
160
161
162
163
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

164
    def enable_gradient_checkpointing(self) -> None:
165
        """
Steven Liu's avatar
Steven Liu committed
166
167
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
168
169
170
171
172
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

173
    def disable_gradient_checkpointing(self) -> None:
174
        """
Steven Liu's avatar
Steven Liu committed
175
176
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
177
178
179
180
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def set_use_npu_flash_attention(self, valid: bool) -> None:
        r"""
        Set the switch for the npu flash attention.
        """

        def fn_recursive_set_npu_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_npu_flash_attention"):
                module.set_use_npu_flash_attention(valid)

            for child in module.children():
                fn_recursive_set_npu_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_npu_flash_attention(module)

    def enable_npu_flash_attention(self) -> None:
        r"""
        Enable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(True)

    def disable_npu_flash_attention(self) -> None:
        r"""
        disable npu flash attention from torch_npu

        """
        self.set_use_npu_flash_attention(False)

Juan Acevedo's avatar
Juan Acevedo committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def set_use_xla_flash_attention(
        self, use_xla_flash_attention: bool, partition_spec: Optional[Callable] = None
    ) -> None:
        # Recursively walk through all the children.
        # Any children which exposes the set_use_xla_flash_attention method
        # gets the message
        def fn_recursive_set_flash_attention(module: torch.nn.Module):
            if hasattr(module, "set_use_xla_flash_attention"):
                module.set_use_xla_flash_attention(use_xla_flash_attention, partition_spec)

            for child in module.children():
                fn_recursive_set_flash_attention(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_flash_attention(module)

    def enable_xla_flash_attention(self, partition_spec: Optional[Callable] = None):
        r"""
        Enable the flash attention pallals kernel for torch_xla.
        """
        self.set_use_xla_flash_attention(True, partition_spec)

    def disable_xla_flash_attention(self):
        r"""
        Disable the flash attention pallals kernel for torch_xla.
        """
        self.set_use_xla_flash_attention(False)

240
241
242
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
243
244
245
246
247
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
248
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
249
250
251
252
253
254
255
256

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

257
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
258
        r"""
Steven Liu's avatar
Steven Liu committed
259
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
260

Steven Liu's avatar
Steven Liu committed
261
262
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
263

Steven Liu's avatar
Steven Liu committed
264
265
266
267
268
269
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
290
        """
291
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
292

293
    def disable_xformers_memory_efficient_attention(self) -> None:
294
        r"""
Steven Liu's avatar
Steven Liu committed
295
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
296
297
298
        """
        self.set_use_memory_efficient_attention_xformers(False)

299
300
301
302
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
303
        save_function: Optional[Callable] = None,
304
        safe_serialization: bool = True,
305
        variant: Optional[str] = None,
306
        max_shard_size: Union[int, str] = "10GB",
307
308
        push_to_hub: bool = False,
        **kwargs,
309
310
    ):
        """
Steven Liu's avatar
Steven Liu committed
311
312
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
313
314
315

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
316
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
317
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
318
319
320
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
321
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
322
323
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
324
                `DIFFUSERS_SAVE_MODE`.
325
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
326
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
327
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
328
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
329
            max_shard_size (`int` or `str`, defaults to `"10GB"`):
330
331
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
332
333
334
335
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
336
337
338
339
340
341
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
342
343
344
345
346
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

347
348
349
350
351
352
353
354
355
356
357
358
359
        hf_quantizer = getattr(self, "hf_quantizer", None)
        if hf_quantizer is not None:
            quantization_serializable = (
                hf_quantizer is not None
                and isinstance(hf_quantizer, DiffusersQuantizer)
                and hf_quantizer.is_serializable
            )
            if not quantization_serializable:
                raise ValueError(
                    f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
                    " the logger on the traceback to understand the reason why the quantized model is not serializable."
                )

360
361
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
        weights_name = _add_variant(weights_name, variant)
362
363
364
        weights_name_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(
            ".safetensors", "{suffix}.safetensors"
        )
365

366
367
        os.makedirs(save_directory, exist_ok=True)

368
369
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
370
            private = kwargs.pop("private", None)
371
372
373
374
375
376
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
377
378
379
380
381
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
382
            model_to_save.save_config(save_directory)
383
384
385
386
387

        # Save the model
        state_dict = model_to_save.state_dict()

        # Save the model
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        state_dict_split = split_torch_state_dict_into_shards(
            state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern
        )

        # Clean the folder from a previous save
        if is_main_process:
            for filename in os.listdir(save_directory):
                if filename in state_dict_split.filename_to_tensors.keys():
                    continue
                full_filename = os.path.join(save_directory, filename)
                if not os.path.isfile(full_filename):
                    continue
                weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "")
                weights_without_ext = weights_without_ext.replace("{suffix}", "")
                filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "")
                # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
                if (
                    filename.startswith(weights_without_ext)
                    and _REGEX_SHARD.fullmatch(filename_without_ext) is not None
                ):
                    os.remove(full_filename)

        for filename, tensors in state_dict_split.filename_to_tensors.items():
            shard = {tensor: state_dict[tensor] for tensor in tensors}
            filepath = os.path.join(save_directory, filename)
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"})
            else:
                torch.save(shard, filepath)

        if state_dict_split.is_sharded:
            index = {
                "metadata": state_dict_split.metadata,
                "weight_map": state_dict_split.tensor_to_filename,
            }
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
            save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
435
436
            )
        else:
437
438
            path_to_weights = os.path.join(save_directory, weights_name)
            logger.info(f"Model weights saved in {path_to_weights}")
439

440
        if push_to_hub:
441
442
443
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
444
            model_card.save(Path(save_directory, "README.md").as_posix())
445

446
447
448
449
450
451
452
453
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

454
455
456
457
458
459
460
461
462
463
464
465
    def dequantize(self):
        """
        Potentially dequantize the model in case it has been quantized by a quantization method that support
        dequantization.
        """
        hf_quantizer = getattr(self, "hf_quantizer", None)

        if hf_quantizer is None:
            raise ValueError("You need to first quantize your model in order to dequantize it")

        return hf_quantizer.dequantize(self)

466
    @classmethod
467
    @validate_hf_hub_args
468
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
469
        r"""
Steven Liu's avatar
Steven Liu committed
470
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
471

Steven Liu's avatar
Steven Liu committed
472
473
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
474
475
476
477
478

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
479
480
481
482
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
483
484

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
485
486
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
487
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
488
489
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
490
491
492
493
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
494
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
495
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
496
            output_loading_info (`bool`, *optional*, defaults to `False`):
497
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
498
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
499
500
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
501
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
502
503
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
504
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
505
506
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
507
508
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
509
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
510
                The subfolder location of a model file within a larger model repository on the Hub or locally.
511
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
512
513
514
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
515
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
516
517
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
518
                same device. Defaults to `None`, meaning that the model will be loaded on CPU.
519

Steven Liu's avatar
Steven Liu committed
520
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
521
522
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
523
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
524
525
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
526
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
527
                The path to offload weights if `device_map` contains the value `"disk"`.
528
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
529
530
531
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
532
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
533
534
535
536
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
537
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
538
539
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
540
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
541
542
543
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
544
545
546

        <Tip>

Steven Liu's avatar
Steven Liu committed
547
548
549
550
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
551
552
553

        </Tip>

Steven Liu's avatar
Steven Liu committed
554
        Example:
555

Steven Liu's avatar
Steven Liu committed
556
557
        ```py
        from diffusers import UNet2DConditionModel
558

Steven Liu's avatar
Steven Liu committed
559
560
561
562
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
563

Steven Liu's avatar
Steven Liu committed
564
565
566
567
568
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
569
        """
570
        cache_dir = kwargs.pop("cache_dir", None)
571
572
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
573
        from_flax = kwargs.pop("from_flax", False)
574
575
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
576
577
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
578
        revision = kwargs.pop("revision", None)
579
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
580
        subfolder = kwargs.pop("subfolder", None)
581
        device_map = kwargs.pop("device_map", None)
582
583
584
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
585
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
586
        variant = kwargs.pop("variant", None)
587
        use_safetensors = kwargs.pop("use_safetensors", None)
588
        quantization_config = kwargs.pop("quantization_config", None)
589
590
591

        allow_pickle = False
        if use_safetensors is None:
592
            use_safetensors = True
593
            allow_pickle = True
594

595
596
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
597
            logger.warning(
598
599
600
601
602
603
604
605
606
607
608
609
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

610
611
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
612
613
614
615
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
616

617
618
619
620
621
622
623
624
625
626
627
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
628

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        # change device_map into a map if we passed an int, a str or a torch.device
        if isinstance(device_map, torch.device):
            device_map = {"": device_map}
        elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
            try:
                device_map = {"": torch.device(device_map)}
            except RuntimeError:
                raise ValueError(
                    "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
                    f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
                )
        elif isinstance(device_map, int):
            if device_map < 0:
                raise ValueError(
                    "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
                )
            else:
                device_map = {"": device_map}

        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            if device_map is not None and not is_torch_version(">=", "1.10"):
                # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
                raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.")

659
660
661
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

662
663
664
665
666
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
667

668
669
670
671
672
673
674
675
676
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
677
            token=token,
678
679
680
681
682
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            **kwargs,
        )
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        # no in-place modification of the original config.
        config = copy.deepcopy(config)

        # determine initial quantization config.
        #######################################
        pre_quantized = "quantization_config" in config and config["quantization_config"] is not None
        if pre_quantized or quantization_config is not None:
            if pre_quantized:
                config["quantization_config"] = DiffusersAutoQuantizer.merge_quantization_configs(
                    config["quantization_config"], quantization_config
                )
            else:
                config["quantization_config"] = quantization_config
            hf_quantizer = DiffusersAutoQuantizer.from_config(
                config["quantization_config"], pre_quantized=pre_quantized
            )
        else:
            hf_quantizer = None

        if hf_quantizer is not None:
Aryan's avatar
Aryan committed
703
704
            is_bnb_quantization_method = hf_quantizer.quantization_config.quant_method.value == "bitsandbytes"
            if is_bnb_quantization_method and device_map is not None:
705
                raise NotImplementedError(
Aryan's avatar
Aryan committed
706
                    "Currently, `device_map` is automatically inferred for quantized bitsandbytes models. Support for providing `device_map` as an input will be added in the future."
707
                )
Aryan's avatar
Aryan committed
708

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
            hf_quantizer.validate_environment(torch_dtype=torch_dtype, from_flax=from_flax, device_map=device_map)
            torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)

            # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
            user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value

            # Force-set to `True` for more mem efficiency
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `hf_quantizer` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False or None when using quantization.")

        # Check if `_keep_in_fp32_modules` is not None
        use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
            (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
        )
        if use_keep_in_fp32_modules:
            keep_in_fp32_modules = cls._keep_in_fp32_modules
            if not isinstance(keep_in_fp32_modules, list):
                keep_in_fp32_modules = [keep_in_fp32_modules]

            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
                logger.info("Set `low_cpu_mem_usage` to True as `_keep_in_fp32_modules` is not None.")
            elif not low_cpu_mem_usage:
                raise ValueError("`low_cpu_mem_usage` cannot be False when `keep_in_fp32_modules` is True.")
        else:
            keep_in_fp32_modules = []
        #######################################
739

740
741
742
743
        # Determine if we're loading from a directory of sharded checkpoints.
        is_sharded = False
        index_file = None
        is_local = os.path.isdir(pretrained_model_name_or_path)
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        index_file_kwargs = {
            "is_local": is_local,
            "pretrained_model_name_or_path": pretrained_model_name_or_path,
            "subfolder": subfolder or "",
            "use_safetensors": use_safetensors,
            "cache_dir": cache_dir,
            "variant": variant,
            "force_download": force_download,
            "proxies": proxies,
            "local_files_only": local_files_only,
            "token": token,
            "revision": revision,
            "user_agent": user_agent,
            "commit_hash": commit_hash,
        }
        index_file = _fetch_index_file(**index_file_kwargs)
        # In case the index file was not found we still have to consider the legacy format.
        # this becomes applicable when the variant is not None.
        if variant is not None and (index_file is None or not os.path.exists(index_file)):
            index_file = _fetch_index_file_legacy(**index_file_kwargs)
764
765
766
767
768
769
        if index_file is not None and index_file.is_file():
            is_sharded = True

        if is_sharded and from_flax:
            raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.")

770
        # load model
771
        model_file = None
772
        if from_flax:
773
            model_file = _get_model_file(
774
                pretrained_model_name_or_path,
775
                weights_name=FLAX_WEIGHTS_NAME,
776
777
778
779
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
780
                token=token,
781
782
783
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
784
                commit_hash=commit_hash,
785
786
            )
            model = cls.from_config(config, **unused_kwargs)
787

788
789
790
791
792
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
793
794
795
796
797
798
799
800
801
802
803
804
            if is_sharded:
                sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files(
                    pretrained_model_name_or_path,
                    index_file,
                    cache_dir=cache_dir,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder or "",
                )
805
                if hf_quantizer is not None and is_bnb_quantization_method:
806
807
808
                    model_file = _merge_sharded_checkpoints(sharded_ckpt_cached_folder, sharded_metadata)
                    logger.info("Merged sharded checkpoints as `hf_quantizer` is not None.")
                    is_sharded = False
809
810

            elif use_safetensors and not is_sharded:
811
                try:
812
                    model_file = _get_model_file(
813
                        pretrained_model_name_or_path,
814
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
815
816
817
818
                        cache_dir=cache_dir,
                        force_download=force_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
819
                        token=token,
820
821
822
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
823
                        commit_hash=commit_hash,
824
                    )
825

826
                except IOError as e:
827
                    logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
828
                    if not allow_pickle:
829
830
831
832
833
834
                        raise
                    logger.warning(
                        "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
                    )

            if model_file is None and not is_sharded:
835
                model_file = _get_model_file(
836
                    pretrained_model_name_or_path,
837
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
838
839
840
841
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
842
                    token=token,
843
844
845
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
846
                    commit_hash=commit_hash,
847
848
849
850
851
852
853
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

854
855
856
857
858
                if hf_quantizer is not None:
                    hf_quantizer.preprocess_model(
                        model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
                    )

859
                # if device_map is None, load the state dict and move the params from meta device to the cpu
860
                if device_map is None and not is_sharded:
861
862
863
864
865
                    # `torch.cuda.current_device()` is fine here when `hf_quantizer` is not None.
                    # It would error out during the `validate_environment()` call above in the absence of cuda.
                    if hf_quantizer is None:
                        param_device = "cpu"
                    # TODO (sayakpaul,  SunMarc): remove this after model loading refactor
Aryan's avatar
Aryan committed
866
                    else:
867
                        param_device = torch.device(torch.cuda.current_device())
868
                    state_dict = load_state_dict(model_file, variant=variant)
869
                    model._convert_deprecated_attention_blocks(state_dict)
870

871
                    # move the params from meta device to cpu
872
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
873
874
                    if hf_quantizer is not None:
                        missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix="")
875
876
877
878
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
879
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
880
881
                            " those weights or else make sure your checkpoint file is correct."
                        )
882

883
884
885
886
887
888
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
889
890
                        hf_quantizer=hf_quantizer,
                        keep_in_fp32_modules=keep_in_fp32_modules,
891
                    )
892
893
894
895
896
897

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
898
                        logger.warning(
899
900
901
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

902
903
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
904
                    # by default the device_map is None and the weights are loaded on the CPU
905
                    force_hook = True
906
907
908
                    device_map = _determine_device_map(
                        model, device_map, max_memory, torch_dtype, keep_in_fp32_modules, hf_quantizer
                    )
909
910
911
912
                    if device_map is None and is_sharded:
                        # we load the parameters on the cpu
                        device_map = {"": "cpu"}
                        force_hook = False
913
914
915
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
916
                            model_file if not is_sharded else index_file,
917
918
919
920
921
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
922
                            force_hooks=force_hook,
923
                            strict=True,
924
925
926
927
928
929
930
931
932
933
934
935
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
936
                            logger.warning(
937
938
939
940
941
942
943
944
945
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
946
                                model_file if not is_sharded else index_file,
947
948
949
950
951
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
952
                                force_hooks=force_hook,
953
                                strict=True,
954
955
956
957
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
958
959
960
961
962
963
964
965

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
966
                model = cls.from_config(config, **unused_kwargs)
967

968
                state_dict = load_state_dict(model_file, variant=variant)
969
                model._convert_deprecated_attention_blocks(state_dict)
970

971
972
973
974
975
976
977
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
978

979
980
981
982
983
984
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
985

986
987
988
989
        if hf_quantizer is not None:
            hf_quantizer.postprocess_model(model)
            model.hf_quantizer = hf_quantizer

990
991
992
993
        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
994
995
996
        # When using `use_keep_in_fp32_modules` if we do a global `to()` here, then we will
        # completely lose the effectivity of `use_keep_in_fp32_modules`.
        elif torch_dtype is not None and hf_quantizer is None and not use_keep_in_fp32_modules:
997
998
            model = model.to(torch_dtype)

999
1000
1001
1002
1003
1004
        if hf_quantizer is not None:
            # We also make sure to purge `_pre_quantization_dtype` when we serialize
            # the model config because `_pre_quantization_dtype` is `torch.dtype`, not JSON serializable.
            model.register_to_config(_name_or_path=pretrained_model_name_or_path, _pre_quantization_dtype=torch_dtype)
        else:
            model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1005
1006
1007
1008

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
1009
1010
1011
1012
            return model, loading_info

        return model

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    # Adapted from `transformers`.
    @wraps(torch.nn.Module.cuda)
    def cuda(self, *args, **kwargs):
        # Checks if the model has been loaded in 4-bit or 8-bit with BNB
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "Calling `cuda()` is not supported for `8-bit` quantized models. "
                    " Please use the model as it is, since the model has already been set to the correct devices."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `cuda()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
        return super().cuda(*args, **kwargs)

    # Adapted from `transformers`.
    @wraps(torch.nn.Module.to)
    def to(self, *args, **kwargs):
        dtype_present_in_args = "dtype" in kwargs

        if not dtype_present_in_args:
            for arg in args:
                if isinstance(arg, torch.dtype):
                    dtype_present_in_args = True
                    break

1041
        if getattr(self, "is_quantized", False):
1042
1043
            if dtype_present_in_args:
                raise ValueError(
1044
1045
                    "Casting a quantized model to a new `dtype` is unsupported. To set the dtype of unquantized layers, please "
                    "use the `torch_dtype` argument when loading the model using `from_pretrained` or `from_single_file`"
1046
1047
                )

1048
        if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
            if getattr(self, "is_loaded_in_8bit", False):
                raise ValueError(
                    "`.to` is not supported for `8-bit` bitsandbytes models. Please use the model as it is, since the"
                    " model has already been set to the correct devices and casted to the correct `dtype`."
                )
            elif is_bitsandbytes_version("<", "0.43.2"):
                raise ValueError(
                    "Calling `to()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
                    f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
                )
        return super().to(*args, **kwargs)

    # Taken from `transformers`.
    def half(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.half()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().half(*args)

    # Taken from `transformers`.
    def float(self, *args):
        # Checks if the model is quantized
        if getattr(self, "is_quantized", False):
            raise ValueError(
                "`.float()` is not supported for quantized model. Please use the model as it is, since the"
                " model has already been cast to the correct `dtype`."
            )
        else:
            return super().float(*args)

1083
1084
1085
1086
    @classmethod
    def _load_pretrained_model(
        cls,
        model,
1087
        state_dict: OrderedDict,
1088
        resolved_archive_file,
1089
1090
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
1091
1092
1093
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
1094
        loaded_keys = list(state_dict.keys())
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
1184
1185
1186

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

1187
1188
1189
1190
1191
1192
1193
1194
1195
    @classmethod
    def _get_signature_keys(cls, obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
        expected_modules = set(required_parameters.keys()) - {"self"}

        return expected_modules, optional_parameters

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
    # Adapted from `transformers` modeling_utils.py
    def _get_no_split_modules(self, device_map: str):
        """
        Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
        get the underlying `_no_split_modules`.

        Args:
            device_map (`str`):
                The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]

        Returns:
            `List[str]`: List of modules that should not be split
        """
        _no_split_modules = set()
        modules_to_check = [self]
        while len(modules_to_check) > 0:
            module = modules_to_check.pop(-1)
            # if the module does not appear in _no_split_modules, we also check the children
            if module.__class__.__name__ not in _no_split_modules:
                if isinstance(module, ModelMixin):
                    if module._no_split_modules is None:
                        raise ValueError(
                            f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
                            "class needs to implement the `_no_split_modules` attribute."
                        )
                    else:
                        _no_split_modules = _no_split_modules | set(module._no_split_modules)
                modules_to_check += list(module.children())
        return list(_no_split_modules)

1226
    @property
1227
    def device(self) -> torch.device:
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
1243
        Get number of (trainable or non-embedding) parameters in the module.
1244
1245
1246

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1247
                Whether or not to return only the number of trainable parameters.
1248
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1249
                Whether or not to return only the number of non-embedding parameters.
1250
1251
1252

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
1264
        """
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)

        if is_loaded_in_4bit:
            if is_bitsandbytes_available():
                import bitsandbytes as bnb
            else:
                raise ValueError(
                    "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
                    " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
                )
1275
1276
1277

        if exclude_embeddings:
            embedding_param_names = [
1278
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
1279
            ]
1280
            total_parameters = [
1281
1282
1283
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
        else:
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
            total_parameters = list(self.parameters())

        total_numel = []

        for param in total_parameters:
            if param.requires_grad or not only_trainable:
                # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
                # used for the 4bit quantization (uint8 tensors are stored)
                if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
                    if hasattr(param, "element_size"):
                        num_bytes = param.element_size()
                    elif hasattr(param, "quant_storage"):
                        num_bytes = param.quant_storage.itemsize
                    else:
                        num_bytes = 1
                    total_numel.append(param.numel() * 2 * num_bytes)
                else:
                    total_numel.append(param.numel())

        return sum(total_numel)

    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem
1322

1323
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
1366

1367
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

1394
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
1395
1396
        deprecated_attention_block_modules = []

1397
        def recursive_find_attn_block(module) -> None:
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426


class LegacyModelMixin(ModelMixin):
    r"""
    A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
    pipeline-specific classes (like `DiTTransformer2DModel`).
    """

    @classmethod
    @validate_hf_hub_args
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
1427
        # To prevent dependency import problem.
1428
1429
        from .model_loading_utils import _fetch_remapped_cls_from_config

1430
1431
1432
        # Create a copy of the kwargs so that we don't mess with the keyword arguments in the downstream calls.
        kwargs_copy = kwargs.copy()

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)

        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }

        # load config
        config, _, _ = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            **kwargs,
        )
        # resolve remapping
        remapped_class = _fetch_remapped_cls_from_config(config, cls)

1468
        return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy)