train_unconditional.py 26.2 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import logging
4
import math
anton-l's avatar
anton-l committed
5
import os
6
7
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
8

9
import accelerate
10
import datasets
11
12
import torch
import torch.nn.functional as F
13
from accelerate import Accelerator
14
from accelerate.logging import get_logger
15
from accelerate.utils import ProjectConfiguration
anton-l's avatar
anton-l committed
16
from datasets import load_dataset
17
from huggingface_hub import HfFolder, Repository, create_repo, whoami
18
from packaging import version
19
from torchvision import transforms
anton-l's avatar
anton-l committed
20
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
21

22
23
24
25
import diffusers
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
26
from diffusers.utils import check_min_version, is_tensorboard_available, is_wandb_available
27

anton-l's avatar
anton-l committed
28

29
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Patrick von Platen's avatar
Patrick von Platen committed
30
check_min_version("0.13.0")
31

32
logger = get_logger(__name__, log_level="INFO")
anton-l's avatar
anton-l committed
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
71
72
73
74
75
76
    parser.add_argument(
        "--model_config_name_or_path",
        type=str,
        default=None,
        help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
    )
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        default=False,
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
124
125
126
127
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
128
129
130
131
132
133
134
135
136
137
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
193
194
195
196
197
198
199
200
201
202
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
224
    parser.add_argument(
225
226
227
228
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
229
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
230
231
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
232
    parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
233
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
234
235
236
237
238
239
240
241
242
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
243
    parser.add_argument(
244
        "--checkpoints_total_limit",
245
246
247
248
249
250
251
252
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more docs"
        ),
    )
253
254
255
256
257
258
259
260
261
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
284
def main(args):
285
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
286

287
    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
288

289
    accelerator = Accelerator(
290
        gradient_accumulation_steps=args.gradient_accumulation_steps,
291
        mixed_precision=args.mixed_precision,
292
        log_with=args.logger,
293
        logging_dir=logging_dir,
294
        project_config=accelerator_project_config,
295
    )
anton-l's avatar
anton-l committed
296

297
298
299
300
301
302
303
304
305
    if args.logger == "tensorboard":
        if not is_tensorboard_available():
            raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")

    elif args.logger == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if args.use_ema:
                ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))

            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(output_dir, "unet"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
                ema_model.load_state_dict(load_model.state_dict())
                ema_model.to(accelerator.device)
                del load_model

            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
361
362
            create_repo(repo_name, exist_ok=True, token=args.hub_token)
            repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
363
364
365
366
367
368
369
370
371
372

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Initialize the model
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    if args.model_config_name_or_path is None:
        model = UNet2DModel(
            sample_size=args.resolution,
            in_channels=3,
            out_channels=3,
            layers_per_block=2,
            block_out_channels=(128, 128, 256, 256, 512, 512),
            down_block_types=(
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "AttnDownBlock2D",
                "DownBlock2D",
            ),
            up_block_types=(
                "UpBlock2D",
                "AttnUpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
            ),
        )
    else:
        config = UNet2DModel.load_config(args.model_config_name_or_path)
        model = UNet2DModel.from_config(config)
400

401
402
403
404
405
406
407
408
    # Create EMA for the model.
    if args.use_ema:
        ema_model = EMAModel(
            model.parameters(),
            decay=args.ema_max_decay,
            use_ema_warmup=True,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
409
410
            model_cls=UNet2DModel,
            model_config=model.config,
411
412
413
414
        )

    # Initialize the scheduler
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
415
    if accepts_prediction_type:
416
417
418
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
419
            prediction_type=args.prediction_type,
420
421
422
423
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

424
    # Initialize the optimizer
425
426
427
428
429
430
431
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
432

433
434
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
435

436
437
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
438
439
440
441
442
443
444
445
446
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
447
448
449
450
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
451
    augmentations = transforms.Compose(
452
        [
453
454
455
456
457
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
458
459
        ]
    )
anton-l's avatar
anton-l committed
460

461
    def transform_images(examples):
anton-l's avatar
anton-l committed
462
463
464
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

465
466
    logger.info(f"Dataset size: {len(dataset)}")

467
    dataset.set_transform(transform_images)
468
469
470
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
471

472
    # Initialize the learning rate scheduler
anton-l's avatar
anton-l committed
473
    lr_scheduler = get_scheduler(
474
        args.lr_scheduler,
anton-l's avatar
anton-l committed
475
        optimizer=optimizer,
476
477
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
478
479
    )

480
    # Prepare everything with our `accelerator`.
anton-l's avatar
anton-l committed
481
482
483
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
484

485
486
    if args.use_ema:
        ema_model.to(accelerator.device)
anton-l's avatar
anton-l committed
487

488
489
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
490
491
492
493
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

494
495
496
497
498
499
500
501
502
503
504
505
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    max_train_steps = args.num_epochs * num_update_steps_per_epoch

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

anton-l's avatar
anton-l committed
506
    global_step = 0
507
508
    first_epoch = 0

509
    # Potentially load in the weights and states from a previous save
510
511
512
513
514
515
516
517
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
533

534
    # Train!
535
    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
536
        model.train()
537
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
538
539
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
540
541
542
543
544
545
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

546
            clean_images = batch["input"]
547
548
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
549
            bsz = clean_images.shape[0]
550
551
            # Sample a random timestep for each image
            timesteps = torch.randint(
552
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
553
            ).long()
554

555
            # Add noise to the clean images according to the noise magnitude at each timestep
556
            # (this is the forward diffusion process)
557
558
559
560
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
561
562
                model_output = model(noisy_images, timesteps).sample

563
                if args.prediction_type == "epsilon":
564
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
565
                elif args.prediction_type == "sample":
566
567
568
569
570
571
572
573
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
574
575
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
576

577
                accelerator.backward(loss)
578

579
580
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
581
582
583
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
584

585
586
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
587
588
                if args.use_ema:
                    ema_model.step(model.parameters())
589
590
591
                progress_bar.update(1)
                global_step += 1

592
593
594
595
596
597
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

598
599
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
600
                logs["ema_decay"] = ema_model.cur_decay_value
601
602
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
603
        progress_bar.close()
anton-l's avatar
anton-l committed
604

anton-l's avatar
anton-l committed
605
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
606

anton-l's avatar
anton-l committed
607
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
608
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
609
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
610
                unet = accelerator.unwrap_model(model)
611
612
                if args.use_ema:
                    ema_model.copy_to(unet.parameters())
613
                pipeline = DDPMPipeline(
614
                    unet=unet,
615
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
616
                )
anton-l's avatar
anton-l committed
617

618
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
619
                # run pipeline in inference (sample random noise and denoise)
620
621
622
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
623
                    num_inference_steps=args.ddpm_num_inference_steps,
624
625
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
626

anton-l's avatar
anton-l committed
627
628
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
629

630
                if args.logger == "tensorboard":
631
632
633
                    accelerator.get_tracker("tensorboard").add_images(
                        "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                    )
634
635
636
637
638
                elif args.logger == "wandb":
                    accelerator.get_tracker("wandb").log(
                        {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch},
                        step=global_step,
                    )
anton-l's avatar
anton-l committed
639

640
641
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
642
                pipeline.save_pretrained(args.output_dir)
643
                if args.push_to_hub:
644
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
645

646
647
    accelerator.end_training()

anton-l's avatar
anton-l committed
648
649

if __name__ == "__main__":
650
    args = parse_args()
anton-l's avatar
anton-l committed
651
    main(args)