README.md 1.73 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Diffusers

## Library structure:

```
├── models
│   ├── dalle2
│   │   ├── modeling_dalle2.py
│   │   ├── README.md
│   │   └── run_dalle2.py
│   ├── ddpm
│   │   ├── modeling_ddpm.py
│   │   ├── README.md
│   │   └── run_ddpm.py
│   ├── glide
│   │   ├── modeling_glide.py
│   │   ├── README.md
│   │   └── run_dalle2.py
│   ├── imagen
│   │   ├── modeling_dalle2.py
│   │   ├── README.md
│   │   └── run_dalle2.py
│   └── latent_diffusion
│       ├── modeling_latent_diffusion.py
│       ├── README.md
│       └── run_latent_diffusion.py
├── src
│   └── diffusers
│       ├── configuration_utils.py
│       ├── __init__.py
│       ├── modeling_utils.py
│       ├── models
│       │   └── unet.py
│       ├── processors
│       └── samplers
│           ├── gaussian.py
├── tests
│   └── test_modeling_utils.py
```
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

## Dummy Example
```python
from diffusers import UNetModel, GaussianDiffusion
import torch

# 1. Load model
unet = UNetModel.from_pretrained("fusing/ddpm_dummy")

# 2. Do one denoising step with model
batch_size, num_channels, height, width = 1, 3, 32, 32
dummy_noise = torch.ones((batch_size, num_channels, height, width))
time_step = torch.tensor([10])
image = unet(dummy_noise, time_step)

# 3. Load sampler
sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy")

# 4. Sample image from sampler passing the model
image = sampler.sample(model, batch_size=1)

print(image)
```