scheduling_ddpm.py 14.7 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
25
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
102
103
        predict_epsilon (`bool`):
            optional flag to use when the model predicts the noise (epsilon), or the samples instead of the noise.
104
105
106

    """

107
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
108

109
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
110
111
    def __init__(
        self,
Partho's avatar
Partho committed
112
113
114
115
116
117
118
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
119
        predict_epsilon: bool = True,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
120
    ):
121
        if trained_betas is not None:
122
            self.betas = torch.from_numpy(trained_betas)
123
        elif beta_schedule == "linear":
124
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
125
126
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
127
128
129
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
130
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
131
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
132
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
133
134
135
136
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
137
138
139
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
140
        self.alphas = 1.0 - self.betas
141
142
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
143

144
145
146
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

147
148
        # setable values
        self.num_inference_steps = None
149
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
150

151
152
        self.variance_type = variance_type

153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

167
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
168
169
170
171
172
173
174
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
175
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
176
        self.num_inference_steps = num_inference_steps
177
        timesteps = np.arange(
178
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
179
180
        )[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
181

182
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
183
184
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
185

Kashif Rasul's avatar
Kashif Rasul committed
186
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
187
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
188
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
189
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
190

191
192
193
        if variance_type is None:
            variance_type = self.config.variance_type

194
        # hacks - were probably added for training stability
195
        if variance_type == "fixed_small":
196
            variance = torch.clamp(variance, min=1e-20)
197
        # for rl-diffuser https://arxiv.org/abs/2205.09991
198
        elif variance_type == "fixed_small_log":
199
            variance = torch.log(torch.clamp(variance, min=1e-20))
200
            variance = torch.exp(0.5 * variance)
201
        elif variance_type == "fixed_large":
202
            variance = self.betas[t]
203
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
204
            # Glide max_log
205
            variance = torch.log(self.betas[t])
206
207
208
209
210
211
212
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
213
214
215

        return variance

216
217
    def step(
        self,
218
        model_output: torch.FloatTensor,
219
        timestep: int,
220
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
221
        generator=None,
222
        return_dict: bool = True,
223
        **kwargs,
224
    ) -> Union[DDPMSchedulerOutput, Tuple]:
225
226
227
228
229
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
230
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
231
            timestep (`int`): current discrete timestep in the diffusion chain.
232
            sample (`torch.FloatTensor`):
233
234
                current instance of sample being created by diffusion process.
            generator: random number generator.
235
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
236
237

        Returns:
238
239
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
240
            returning a tuple, the first element is the sample tensor.
241
242

        """
243
244
        message = (
            "Please make sure to instantiate your scheduler with `predict_epsilon` instead. E.g. `scheduler ="
245
            " DDPMScheduler.from_pretrained(<model_id>, predict_epsilon=True)`."
246
247
248
249
250
251
252
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)
        if predict_epsilon is not None and predict_epsilon != self.config.predict_epsilon:
            new_config = dict(self.config)
            new_config["predict_epsilon"] = predict_epsilon
            self._internal_dict = FrozenDict(new_config)

253
        t = timestep
254

255
256
257
258
259
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
260
        # 1. compute alphas, betas
261
262
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
263
264
265
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

266
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
267
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
268
        if self.config.predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
269
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
270
        else:
Patrick von Platen's avatar
Patrick von Platen committed
271
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
272
273

        # 3. Clip "predicted x_0"
274
        if self.config.clip_sample:
275
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
276

277
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
278
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
279
280
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
281

282
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
283
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
284
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
285

Patrick von Platen's avatar
Patrick von Platen committed
286
287
288
        # 6. Add noise
        variance = 0
        if t > 0:
289
290
291
292
293
294
295
296
297
            device = model_output.device
            if device.type == "mps":
                # randn does not work reproducibly on mps
                variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                variance_noise = variance_noise.to(device)
            else:
                variance_noise = torch.randn(
                    model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                )
298
299
300
301
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
302
303
304

        pred_prev_sample = pred_prev_sample + variance

305
306
307
        if not return_dict:
            return (pred_prev_sample,)

308
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
309

Partho's avatar
Partho committed
310
311
    def add_noise(
        self,
312
313
314
315
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
316
317
318
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
319

anton-l's avatar
anton-l committed
320
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
321
322
323
324
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
325
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
326
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
327
328
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
329
330

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
331
        return noisy_samples
anton-l's avatar
anton-l committed
332

Patrick von Platen's avatar
improve  
Patrick von Platen committed
333
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
334
        return self.config.num_train_timesteps