test_pipelines.py 38.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
import tempfile
20
import tracemalloc
21
22
23
24
25
import unittest

import numpy as np
import torch

26
import accelerate
27
import PIL
28
import transformers
29
from diffusers import (
30
    AutoencoderKL,
31
32
33
34
35
36
37
38
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
39
40
    OnnxStableDiffusionImg2ImgPipeline,
    OnnxStableDiffusionInpaintPipeline,
41
    OnnxStableDiffusionPipeline,
42
43
44
45
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
46
    StableDiffusionImg2ImgPipeline,
47
    StableDiffusionInpaintPipelineLegacy,
48
    StableDiffusionPipeline,
49
    UNet2DConditionModel,
50
    UNet2DModel,
51
    VQModel,
52
    logging,
53
54
)
from diffusers.pipeline_utils import DiffusionPipeline
55
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
56
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, load_image, slow, torch_device
57
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir
58
from packaging import version
59
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
60
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
61
62
63
64
65


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
66
67
68
69
70
71
72
73
74
75
76
77
78
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
79
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
80
81
82
83
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
84
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
85
86
87
88
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
121
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
125
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
126
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
132

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
133
134
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
135
        )
136
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
141
142
143
144
145
146
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


147
class PipelineFastTests(unittest.TestCase):
148
149
150
151
152
153
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
266
        scheduler = DDIMScheduler()
267
268
269

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
270
        ddpm.set_progress_bar_config(disable=None)
271

272
273
274
275
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

276
        generator = torch.manual_seed(0)
277
278
279
280
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
281
282

        image_slice = image[0, -3:, -3:, -1]
283
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
284
285
286
287
288

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
289
290
291
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
292
293
294

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
295
        scheduler = PNDMScheduler()
296
297
298

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
299
        pndm.set_progress_bar_config(disable=None)
300
301
302
303

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

304
        generator = torch.manual_seed(0)
305
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
306
307

        image_slice = image[0, -3:, -3:, -1]
308
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
309
310
311
312

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
313
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
314
315
316

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
317
        scheduler = DDIMScheduler()
318
319
320
321
322
323
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
324
        ldm.set_progress_bar_config(disable=None)
325
326

        prompt = "A painting of a squirrel eating a burger"
327
328
329
330

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
331
332
333
            _ = ldm(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy"
            ).images
334

335
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
336
337
338
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy"
        ).images
339

340
341
342
343
344
345
346
347
348
349
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

350
        image_slice = image[0, -3:, -3:, -1]
351
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
352
353
354
355

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
356
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
357
358
359

    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
360
        scheduler = ScoreSdeVeScheduler()
361
362
363

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
364
        sde_ve.set_progress_bar_config(disable=None)
365

366
367
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
368

369
370
371
372
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
373
374

        image_slice = image[0, -3:, -3:, -1]
375
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
376
377
378
379

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
380
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
381
382
383

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
384
        scheduler = DDIMScheduler()
385
386
387
388
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
389
        ldm.set_progress_bar_config(disable=None)
390

391
392
393
394
395
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

396
        generator = torch.manual_seed(0)
397
398
399
400
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
401
402

        image_slice = image[0, -3:, -3:, -1]
403
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
404
405
406
407

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
408
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
409
410
411

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
412
        scheduler = KarrasVeScheduler()
413
414
415

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
416
        pipe.set_progress_bar_config(disable=None)
417
418

        generator = torch.manual_seed(0)
419
420
421
422
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
423
424

        image_slice = image[0, -3:, -3:, -1]
425
426
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

427
428
429
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
430
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
431

432
433
    def test_components(self):
        """Test that components property works correctly"""
434
        unet = self.dummy_cond_unet
435
        scheduler = PNDMScheduler(skip_prk_steps=True)
436
437
438
439
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

440
441
442
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
443
444

        # make sure here that pndm scheduler skips prk
445
        inpaint = StableDiffusionInpaintPipelineLegacy(
446
447
448
449
450
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
451
            safety_checker=None,
452
            feature_extractor=self.dummy_extractor,
453
454
455
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
456
457

        prompt = "A painting of a squirrel eating a burger"
458
459
460
461
462
463
464

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

465
        image_inpaint = inpaint(
466
467
468
469
470
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
471
472
473
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
474
475
476
477
478
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
479
480
481
        ).images
        image_text2img = text2img(
            [prompt],
482
483
484
            generator=generator,
            num_inference_steps=2,
            output_type="np",
485
        ).images
486

487
488
489
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
490

491

492
class PipelineTesterMixin(unittest.TestCase):
493
494
495
496
497
498
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

520
521
522
523
524
525
526
527
528
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
                DiffusionPipeline.from_pretrained(model_id, not_used=True, cache_dir=tmpdirname, force_download=True)

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

529
530
531
532
533
534
535
536
537
538
539
540
541
542
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
543
        ddpm.to(torch_device)
544
        ddpm.set_progress_bar_config(disable=None)
545
546
547
548

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
549
            new_ddpm.to(torch_device)
550
551

        generator = torch.manual_seed(0)
552
        image = ddpm(generator=generator, output_type="numpy").images
553

554
        generator = generator.manual_seed(0)
555
        new_image = new_ddpm(generator=generator, output_type="numpy").images
556
557
558
559
560
561
562

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

563
        scheduler = DDPMScheduler(num_train_timesteps=10)
564

565
566
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
567
        ddpm.set_progress_bar_config(disable=None)
568
569
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
570
        ddpm_from_hub.set_progress_bar_config(disable=None)
571
572

        generator = torch.manual_seed(0)
573
        image = ddpm(generator=generator, output_type="numpy").images
574

575
        generator = generator.manual_seed(0)
576
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
577
578
579
580
581
582
583

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

584
585
        scheduler = DDPMScheduler(num_train_timesteps=10)

586
587
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
588
589
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
590
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
591

592
593
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
594
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
595
596

        generator = torch.manual_seed(0)
597
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
598

599
        generator = generator.manual_seed(0)
600
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
601
602
603
604
605
606
607
608

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
609
        pipe.to(torch_device)
610
        pipe.set_progress_bar_config(disable=None)
611
612

        generator = torch.manual_seed(0)
613
        images = pipe(generator=generator, output_type="numpy").images
614
615
616
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

617
        images = pipe(generator=generator, output_type="pil").images
618
619
620
621
622
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
623
        images = pipe(generator=generator).images
624
625
626
627
628
629
630
631
632
633
634
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
635
        ddpm.to(torch_device)
636
        ddpm.set_progress_bar_config(disable=None)
637
638

        generator = torch.manual_seed(0)
639
        image = ddpm(generator=generator, output_type="numpy").images
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
655
        ddpm.to(torch_device)
656
        ddpm.set_progress_bar_config(disable=None)
657
658

        generator = torch.manual_seed(0)
659
        image = ddpm(generator=generator, output_type="numpy").images
660
661
662
663
664
665
666
667
668
669
670
671

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
672
        scheduler = DDIMScheduler()
673
674

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
675
        ddim.to(torch_device)
676
        ddim.set_progress_bar_config(disable=None)
677
678

        generator = torch.manual_seed(0)
679
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
680
681
682
683
684
685
686
687
688
689
690
691

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
692
        scheduler = PNDMScheduler()
693
694

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
695
        pndm.to(torch_device)
696
        pndm.set_progress_bar_config(disable=None)
697
        generator = torch.manual_seed(0)
698
        image = pndm(generator=generator, output_type="numpy").images
699
700
701
702
703
704
705
706
707
708

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
709
        ldm.to(torch_device)
710
        ldm.set_progress_bar_config(disable=None)
711
712
713

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
714
715
716
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy"
        ).images
717
718
719
720
721
722
723
724
725
726

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
727
        ldm.to(torch_device)
728
        ldm.set_progress_bar_config(disable=None)
729
730
731

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
732
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
748
        sde_ve.to(torch_device)
749
        sde_ve.set_progress_bar_config(disable=None)
750

751
752
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
753
754
755

        image_slice = image[0, -3:, -3:, -1]

756
        assert image.shape == (1, 256, 256, 3)
757

758
759
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
760
761

    @slow
762
763
764
765
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
        ldm.to(torch_device)
        ldm.set_progress_bar_config(disable=None)
766

767
768
        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
769

770
        image_slice = image[0, -3:, -3:, -1]
771

772
773
774
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
775
776

    @slow
777
778
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"
779

780
781
782
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
783

784
785
786
787
788
789
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
790

791
792
        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
793

794
795
        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
796

797
798
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
799

800
801
802
    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"
803

804
805
806
        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
807

808
809
810
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
811

812
813
814
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
815

816
817
818
819
820
821
822
        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
823

824
825
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1
826

827
828
829
830
831
832
833
    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
        scheduler = KarrasVeScheduler()

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
834
835
836
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

837
838
        generator = torch.manual_seed(0)
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
839

840
841
842
843
        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
844
845
846

    @slow
    def test_stable_diffusion_onnx(self):
847
        sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
848
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
849
        )
850
851
852

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
853
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=5, output_type="np")
854
855
856
857
858
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
859
        expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327])
860
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
861

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    @slow
    def test_stable_diffusion_img2img_onnx(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
        pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        np.random.seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            num_inference_steps=8,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 383:386, -1]

        assert images.shape == (1, 512, 768, 3)
889
890
891
        expected_slice = np.array([0.4830, 0.5242, 0.5603, 0.5016, 0.5131, 0.5111, 0.4928, 0.5025, 0.5055])
        # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
        assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
892
893
894
895
896
897
898
899
900
901
902
903
904

    @slow
    def test_stable_diffusion_inpaint_onnx(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )

        pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
905
            "runwayml/stable-diffusion-inpainting", revision="onnx", provider="CPUExecutionProvider"
906
907
908
909
910
911
912
913
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A red cat sitting on a park bench"

        np.random.seed(0)
        output = pipe(
            prompt=prompt,
914
            image=init_image,
915
916
917
918
919
920
921
922
923
            mask_image=mask_image,
            guidance_scale=7.5,
            num_inference_steps=8,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 255:258, -1]

        assert images.shape == (1, 512, 512, 3)
924
        expected_slice = np.array([0.2951, 0.2955, 0.2922, 0.2036, 0.1977, 0.2279, 0.1716, 0.1641, 0.1799])
925
926
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

927
928
929
930
931
932
933
934
935
936
937
938
    @slow
    def test_stable_diffusion_onnx_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
939
                    [-0.5950, -0.3039, -1.1672, 0.1594, -1.1572, 0.6719, -1.9712, -0.0403, 0.9592]
940
941
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
942
943
944
945
946
947
948
            elif step == 5:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [-0.4776, -0.0119, -0.8519, -0.0275, -0.9764, 0.9820, -0.3843, 0.3788, 1.2264]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
949
950
951

        test_callback_fn.has_been_called = False

952
        pipe = OnnxStableDiffusionPipeline.from_pretrained(
953
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
954
955
956
957
958
959
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "Andromeda galaxy in a bottle"

        np.random.seed(0)
960
        pipe(prompt=prompt, num_inference_steps=5, guidance_scale=7.5, callback=test_callback_fn, callback_steps=1)
961
        assert test_callback_fn.has_been_called
962
        assert number_of_steps == 6
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_works(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        model_id = "CompVis/stable-diffusion-v1-4"
        _ = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        ).to(torch_device)

    @slow
    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_reduces_memory_footprint(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        pipeline_id = "CompVis/stable-diffusion-v1-4"

        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        pipeline_normal_load = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        )
        pipeline_normal_load.to(torch_device)
        _, peak_normal = tracemalloc.get_traced_memory()
        tracemalloc.stop()

        del pipeline_normal_load
        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        _ = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        )
        _, peak_accelerate = tracemalloc.get_traced_memory()

        tracemalloc.stop()

        assert peak_accelerate < peak_normal