test_pipelines.py 87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
import tempfile
20
import tracemalloc
21
22
23
24
25
import unittest

import numpy as np
import torch

26
import accelerate
27
import PIL
28
import transformers
29
from diffusers import (
30
    AutoencoderKL,
31
32
33
34
35
36
37
38
39
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
40
    OnnxStableDiffusionPipeline,
41
42
43
44
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
45
46
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
47
    StableDiffusionPipeline,
48
    UNet2DConditionModel,
49
    UNet2DModel,
50
    VQModel,
51
52
)
from diffusers.pipeline_utils import DiffusionPipeline
53
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
54
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, load_image, slow, torch_device
Patrick von Platen's avatar
Patrick von Platen committed
55
from diffusers.utils.testing_utils import get_tests_dir
56
from packaging import version
57
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
58
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
59
60
61
62
63


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
64
65
66
67
68
69
70
71
72
73
74
75
76
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
77
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
78
79
80
81
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
82
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
83
84
85
86
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
119
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
120
121
122
123
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
124
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
128
129
130

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
131
132
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
133
        )
134
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
138
139
140
141
142
143
144
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


145
class PipelineFastTests(unittest.TestCase):
146
147
148
149
150
151
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
235
            return images, [False] * len(images)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
256
        scheduler = DDIMScheduler()
257
258
259

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
260
        ddpm.set_progress_bar_config(disable=None)
261

262
263
264
265
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

266
        generator = torch.manual_seed(0)
267
268
269
270
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
271
272

        image_slice = image[0, -3:, -3:, -1]
273
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
274
275
276
277
278

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
279
280
281
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
282
283
284

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
285
        scheduler = PNDMScheduler()
286
287
288

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
289
        pndm.set_progress_bar_config(disable=None)
290
291
292
293

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

294
        generator = torch.manual_seed(0)
295
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
296
297

        image_slice = image[0, -3:, -3:, -1]
298
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
299
300
301
302

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
303
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
304
305
306

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
307
        scheduler = DDIMScheduler()
308
309
310
311
312
313
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
314
        ldm.set_progress_bar_config(disable=None)
315
316

        prompt = "A painting of a squirrel eating a burger"
317
318
319
320

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
321
322
323
            _ = ldm(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy"
            ).images
324

325
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
326
327
328
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy"
        ).images
329

330
331
332
333
334
335
336
337
338
339
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

340
        image_slice = image[0, -3:, -3:, -1]
341
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
342
343
344
345

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
346
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
347
348

    def test_stable_diffusion_ddim(self):
349
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
373
        sd_pipe = sd_pipe.to(device)
374
        sd_pipe.set_progress_bar_config(disable=None)
375
376

        prompt = "A painting of a squirrel eating a burger"
377

378
379
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
380
        image = output.images
381

382
383
384
385
386
387
388
389
390
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
391
392

        image_slice = image[0, -3:, -3:, -1]
393
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
394
395
396

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
397

398
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
399
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
400

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            height=536,
            width=536,
            num_inference_steps=2,
            output_type="np",
        )
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 134, 134, 3)
        expected_slice = np.array([0.7834, 0.5488, 0.5781, 0.46, 0.3609, 0.5369, 0.542, 0.4855, 0.5557])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

450
    def test_stable_diffusion_pndm(self):
451
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
452
        unet = self.dummy_cond_unet
453
        scheduler = PNDMScheduler(skip_prk_steps=True)
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
468
        sd_pipe = sd_pipe.to(device)
469
        sd_pipe.set_progress_bar_config(disable=None)
470
471

        prompt = "A painting of a squirrel eating a burger"
472
473
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
474

475
476
477
478
479
480
481
482
483
484
485
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
486
487

        image_slice = image[0, -3:, -3:, -1]
488
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
489
490
491
492

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
493
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
494

495
496
497
498
499
500
    def test_from_pretrained_error_message_uninstalled_packages(self):
        # TODO(Patrick, Pedro) - need better test here for the future
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-lms-pipe")
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)

501
502
503
504
505
506
507
508
509
510
511
    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

512
    def test_stable_diffusion_k_lms(self):
513
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
530
        sd_pipe = sd_pipe.to(device)
531
        sd_pipe.set_progress_bar_config(disable=None)
532
533

        prompt = "A painting of a squirrel eating a burger"
534
535
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
536

537
538
539
540
541
542
543
544
545
546
547
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
548
549

        image_slice = image[0, -3:, -3:, -1]
550
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
551
552
553
554

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
555
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    def test_stable_diffusion_attention_chunk(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure chunking the attention yields the same result
        sd_pipe.enable_attention_slicing(slice_size=1)
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        negative_prompt = "french fries"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
        )

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4851, 0.4617, 0.4765, 0.5127, 0.4845, 0.5153, 0.5141, 0.4886, 0.4719])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

629
630
    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
631
        scheduler = ScoreSdeVeScheduler()
632
633
634

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
635
        sde_ve.set_progress_bar_config(disable=None)
636

637
638
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
639

640
641
642
643
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
644
645

        image_slice = image[0, -3:, -3:, -1]
646
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
647
648
649
650

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
651
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
652
653
654

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
655
        scheduler = DDIMScheduler()
656
657
658
659
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
660
        ldm.set_progress_bar_config(disable=None)
661

662
663
664
665
666
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

667
        generator = torch.manual_seed(0)
668
669
670
671
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
672
673

        image_slice = image[0, -3:, -3:, -1]
674
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
675
676
677
678

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
679
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
680
681
682

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
683
        scheduler = KarrasVeScheduler()
684
685
686

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
687
        pipe.set_progress_bar_config(disable=None)
688
689

        generator = torch.manual_seed(0)
690
691
692
693
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
694
695

        image_slice = image[0, -3:, -3:, -1]
696
697
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

698
699
700
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
701
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
702
703

    def test_stable_diffusion_img2img(self):
704
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
705
        unet = self.dummy_cond_unet
706
        scheduler = PNDMScheduler(skip_prk_steps=True)
707
708
709
710
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

711
        init_image = self.dummy_image.to(device)
712
713
714
715
716
717
718
719
720
721
722

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
723
        sd_pipe = sd_pipe.to(device)
724
        sd_pipe.set_progress_bar_config(disable=None)
725
726

        prompt = "A painting of a squirrel eating a burger"
727
728
729
730
731
732
733
734
735
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
736

737
738
739
740
741
742
743
744
745
746
747
748
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
749
750

        image_slice = image[0, -3:, -3:, -1]
751
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
752
753
754
755

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
756
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
757

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        negative_prompt = "french fries"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device).repeat(2, 1, 1, 1)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = 2 * ["A painting of a squirrel eating a burger"]
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )

        image = output.images

        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
        expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
876
        image = output.images
877

878
879
880
881
882
883
884
885
886
887
888
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
889
890

        image_slice = image[0, -3:, -3:, -1]
891
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
892
893
894
895

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
896
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
897

898
    def test_stable_diffusion_inpaint(self):
899
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
900
        unet = self.dummy_cond_unet
901
        scheduler = PNDMScheduler(skip_prk_steps=True)
902
903
904
905
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

906
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
907
908
909
910
911
912
913
914
915
916
917
918
919
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
920
        sd_pipe = sd_pipe.to(device)
921
        sd_pipe.set_progress_bar_config(disable=None)
922
923

        prompt = "A painting of a squirrel eating a burger"
924
925
926
927
928
929
930
931
932
933
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
934

935
936
937
938
939
940
941
942
943
944
945
946
947
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
948
949

        image_slice = image[0, -3:, -3:, -1]
950
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
951
952
953
954

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
955
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
956

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    def test_stable_diffusion_inpaint_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        negative_prompt = "french fries"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4765, 0.5339, 0.4541, 0.6240, 0.5439, 0.4055, 0.5503, 0.5891, 0.5150])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
    def test_stable_diffusion_num_images_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(prompt, num_inference_steps=2, output_type="np").images

        assert images.shape == (1, 128, 128, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe([prompt] * batch_size, num_inference_steps=2, output_type="np").images

        assert images.shape == (batch_size, 128, 128, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

        assert images.shape == (num_images_per_prompt, 128, 128, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 128, 128, 3)

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
        device = "cpu"
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

    def test_stable_diffusion_inpaint_num_images_per_prompt(self):
        device = "cpu"
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        ).images

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        ).images

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

Anton Lozhkov's avatar
Anton Lozhkov committed
1199
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
    def test_stable_diffusion_fp16(self):
        """Test that stable diffusion works with fp16"""
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images

        assert image.shape == (1, 128, 128, 3)

Anton Lozhkov's avatar
Anton Lozhkov committed
1232
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
    def test_stable_diffusion_img2img_fp16(self):
        """Test that stable diffusion img2img works with fp16"""
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(torch_device)

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = sd_pipe(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert image.shape == (1, 32, 32, 3)

Anton Lozhkov's avatar
Anton Lozhkov committed
1273
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
    def test_stable_diffusion_inpaint_fp16(self):
        """Test that stable diffusion inpaint works with fp16"""
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = sd_pipe(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        ).images

        assert image.shape == (1, 32, 32, 3)

1317

1318
class PipelineTesterMixin(unittest.TestCase):
1319
1320
1321
1322
1323
1324
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

1346
1347
1348
1349
1350
1351
1352
    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, [False] * len(images)

        return check

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
1367
        ddpm.to(torch_device)
1368
        ddpm.set_progress_bar_config(disable=None)
1369
1370
1371
1372

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
1373
            new_ddpm.to(torch_device)
1374
1375

        generator = torch.manual_seed(0)
1376
        image = ddpm(generator=generator, output_type="numpy").images
1377

1378
        generator = generator.manual_seed(0)
1379
        new_image = new_ddpm(generator=generator, output_type="numpy").images
1380
1381
1382
1383
1384
1385
1386

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

1387
        scheduler = DDPMScheduler(num_train_timesteps=10)
1388

1389
1390
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
1391
        ddpm.set_progress_bar_config(disable=None)
1392
1393
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
1394
        ddpm_from_hub.set_progress_bar_config(disable=None)
1395
1396

        generator = torch.manual_seed(0)
1397
        image = ddpm(generator=generator, output_type="numpy").images
1398

1399
        generator = generator.manual_seed(0)
1400
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
1401
1402
1403
1404
1405
1406
1407

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1408
1409
        scheduler = DDPMScheduler(num_train_timesteps=10)

1410
1411
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
1412
1413
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
1414
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1415

1416
1417
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
1418
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1419
1420

        generator = torch.manual_seed(0)
1421
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
1422

1423
        generator = generator.manual_seed(0)
1424
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
1425
1426
1427
1428
1429
1430
1431
1432

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
1433
        pipe.to(torch_device)
1434
        pipe.set_progress_bar_config(disable=None)
1435
1436

        generator = torch.manual_seed(0)
1437
        images = pipe(generator=generator, output_type="numpy").images
1438
1439
1440
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1441
        images = pipe(generator=generator, output_type="pil").images
1442
1443
1444
1445
1446
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1447
        images = pipe(generator=generator).images
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
1459
        ddpm.to(torch_device)
1460
        ddpm.set_progress_bar_config(disable=None)
1461
1462

        generator = torch.manual_seed(0)
1463
        image = ddpm(generator=generator, output_type="numpy").images
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
1479
        ddpm.to(torch_device)
1480
        ddpm.set_progress_bar_config(disable=None)
1481
1482

        generator = torch.manual_seed(0)
1483
        image = ddpm(generator=generator, output_type="numpy").images
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1496
        scheduler = DDIMScheduler()
1497
1498

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
1499
        ddim.to(torch_device)
1500
        ddim.set_progress_bar_config(disable=None)
1501
1502

        generator = torch.manual_seed(0)
1503
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1516
        scheduler = PNDMScheduler()
1517
1518

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
1519
        pndm.to(torch_device)
1520
        pndm.set_progress_bar_config(disable=None)
1521
        generator = torch.manual_seed(0)
1522
        image = pndm(generator=generator, output_type="numpy").images
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
1533
        ldm.to(torch_device)
1534
        ldm.set_progress_bar_config(disable=None)
1535
1536
1537

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
1538
1539
1540
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy"
        ).images
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
1551
        ldm.to(torch_device)
1552
        ldm.set_progress_bar_config(disable=None)
1553
1554
1555

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
1556
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
1568
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
1569
        sd_pipe = sd_pipe.to(torch_device)
1570
        sd_pipe.set_progress_bar_config(disable=None)
1571
1572
1573
1574
1575
1576
1577
1578

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

1579
        image = output.images
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
1590
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
1591
        sd_pipe = sd_pipe.to(torch_device)
1592
        sd_pipe.set_progress_bar_config(disable=None)
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
1608
        image = output.images
1609
1610
1611
1612

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
1613
        expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
1614
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1615
1616
1617
1618
1619
1620
1621
1622
1623

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
1624
        sde_ve.to(torch_device)
1625
        sde_ve.set_progress_bar_config(disable=None)
1626

1627
1628
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
1629
1630
1631
1632
1633

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

1634
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
1635
1636
1637
1638
1639
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
1640
        ldm.to(torch_device)
1641
        ldm.set_progress_bar_config(disable=None)
1642
1643

        generator = torch.manual_seed(0)
1644
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1657
1658
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1659
1660

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1661
        ddpm.to(torch_device)
1662
        ddpm.set_progress_bar_config(disable=None)
1663
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1664
        ddim.to(torch_device)
1665
        ddim.set_progress_bar_config(disable=None)
1666
1667

        generator = torch.manual_seed(0)
1668
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
1669
1670

        generator = torch.manual_seed(0)
1671
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
1672
1673
1674
1675
1676
1677
1678
1679
1680

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1681
1682
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1683
1684

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1685
        ddpm.to(torch_device)
1686
        ddpm.set_progress_bar_config(disable=None)
1687

1688
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1689
        ddim.to(torch_device)
1690
        ddim.set_progress_bar_config(disable=None)
1691
1692

        generator = torch.manual_seed(0)
1693
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1694
1695

        generator = torch.manual_seed(0)
1696
1697
1698
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
1699
1700
1701
1702
1703
1704
1705
1706

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
1707
        scheduler = KarrasVeScheduler()
1708
1709

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1710
        pipe.to(torch_device)
1711
        pipe.set_progress_bar_config(disable=None)
1712
1713

        generator = torch.manual_seed(0)
1714
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1715
1716
1717

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
1718
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
1719
1720
1721
1722
1723
1724
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
1725
        pipe = StableDiffusionPipeline.from_pretrained(model_id).to(torch_device)
1726
        pipe.set_progress_bar_config(disable=None)
1727
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler")
1728
1729
1730
1731
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
1732
1733
1734
        image = pipe(
            [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
        ).images
1735
1736
1737
1738
1739

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1740
1741
1742

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1743
1744
1745
    def test_stable_diffusion_memory_chunking(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
1746
1747
1748
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16).to(
            torch_device
        )
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

1781
1782
1783
1784
1785
    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_text2img_pipeline_fp16(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
1786
1787
1788
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16).to(
            torch_device
        )
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output_chunked = pipe(
            [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
        )
        image_chunked = output_chunked.images

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # Make sure results are close enough
        diff = np.abs(image_chunked.flatten() - image.flatten())
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

1812
1813
    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1814
1815
1816
1817
    def test_stable_diffusion_text2img_pipeline(self):
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/text2img/astronaut_riding_a_horse.png"
1818
        )
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id,
            safety_checker=self.dummy_safety_checker,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(prompt=prompt, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np")
        image = output.images[0]
1835

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1852
1853

        model_id = "CompVis/stable-diffusion-v1-4"
1854
1855
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
1856
            safety_checker=self.dummy_safety_checker,
1857
        )
1858
        pipe.to(torch_device)
1859
        pipe.set_progress_bar_config(disable=None)
1860
        pipe.enable_attention_slicing()
1861
1862
1863
1864

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1865
1866
1867
1868
1869
1870
1871
1872
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1873
        image = output.images[0]
1874

1875
        assert image.shape == (512, 768, 3)
1876
1877
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1878
1879
1880

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1881
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1882
1883
1884
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
1885
        )
1886
1887
1888
1889
1890
1891
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape_k_lms.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1892
1893
1894
1895

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
1896
1897
1898
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
1899
            safety_checker=self.dummy_safety_checker,
1900
        )
1901
1902
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1903
        pipe.enable_attention_slicing()
1904
1905
1906
1907

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1908
1909
1910
1911
1912
1913
1914
1915
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1916
        image = output.images[0]
1917

1918
        assert image.shape == (512, 768, 3)
1919
1920
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1921
1922
1923

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1924
    def test_stable_diffusion_inpaint_pipeline(self):
1925
1926
1927
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
1928
        )
1929
1930
1931
1932
1933
1934
1935
1936
1937
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1938
1939

        model_id = "CompVis/stable-diffusion-v1-4"
1940
1941
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
1942
            safety_checker=self.dummy_safety_checker,
1943
        )
1944
        pipe.to(torch_device)
1945
        pipe.set_progress_bar_config(disable=None)
1946
        pipe.enable_attention_slicing()
1947

1948
        prompt = "A red cat sitting on a park bench"
1949
1950

        generator = torch.Generator(device=torch_device).manual_seed(0)
1951
1952
1953
1954
1955
1956
1957
1958
1959
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_pipeline_k_lms(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench_k_lms.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            safety_checker=self.dummy_safety_checker,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
2006
        image = output.images[0]
2007

2008
2009
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2
2010
2011
2012

    @slow
    def test_stable_diffusion_onnx(self):
2013
        sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
2014
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
2015
        )
2016
2017
2018

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
2019
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=5, output_type="np")
2020
2021
2022
2023
2024
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
2025
        expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327])
2026
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [1.8285, 1.2857, -0.1024, 1.2406, -2.3068, 1.0747, -0.0818, -0.6520, -2.9506]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2045
2046
2047
2048
2049
2050
2051
            elif step == 50:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [1.1078, 1.5803, 0.2773, -0.0589, -1.7928, -0.3665, -0.4695, -1.0727, -1.1601]
                )
2052
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
2053
2054
2055
2056

        test_callback_fn.has_been_called = False

        pipe = StableDiffusionPipeline.from_pretrained(
2057
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
2058
        )
2059
        pipe = pipe.to(torch_device)
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "Andromeda galaxy in a bottle"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 51

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2093
2094
2095
2096
2097
            elif step == 37:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.7071, 0.7831, 0.8300, 1.8140, 1.7840, 1.9402, 1.3651, 1.6590, 1.2828])
2098
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
2109
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                init_image=init_image,
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 38

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [-0.5472, 1.1218, -0.5505, -0.9390, -1.0794, 0.4063, 0.5158, 0.6429, -1.5246]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2149
2150
2151
2152
2153
2154
            elif step == 37:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.4781, 1.1572, 0.6258, 0.2291, 0.2554, -0.1443, 0.7085, -0.1598, -0.5659])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
2168
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                init_image=init_image,
                mask_image=mask_image,
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 38

    @slow
    def test_stable_diffusion_onnx_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
2204
                    [-0.5950, -0.3039, -1.1672, 0.1594, -1.1572, 0.6719, -1.9712, -0.0403, 0.9592]
2205
2206
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2207
2208
2209
2210
2211
2212
2213
            elif step == 5:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [-0.4776, -0.0119, -0.8519, -0.0275, -0.9764, 0.9820, -0.3843, 0.3788, 1.2264]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2214
2215
2216

        test_callback_fn.has_been_called = False

2217
        pipe = OnnxStableDiffusionPipeline.from_pretrained(
2218
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
2219
2220
2221
2222
2223
2224
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "Andromeda galaxy in a bottle"

        np.random.seed(0)
2225
        pipe(prompt=prompt, num_inference_steps=5, guidance_scale=7.5, callback=test_callback_fn, callback_steps=1)
2226
        assert test_callback_fn.has_been_called
2227
        assert number_of_steps == 6
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_works(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        model_id = "CompVis/stable-diffusion-v1-4"
        _ = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        ).to(torch_device)

    @slow
    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_reduces_memory_footprint(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        pipeline_id = "CompVis/stable-diffusion-v1-4"

        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        pipeline_normal_load = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        )
        pipeline_normal_load.to(torch_device)
        _, peak_normal = tracemalloc.get_traced_memory()
        tracemalloc.stop()

        del pipeline_normal_load
        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        _ = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        )
        _, peak_accelerate = tracemalloc.get_traced_memory()

        tracemalloc.stop()

        assert peak_accelerate < peak_normal