test_pipelines.py 97.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
import tempfile
20
import tracemalloc
21
22
23
24
25
import unittest

import numpy as np
import torch

26
import accelerate
27
import PIL
28
import transformers
29
from diffusers import (
30
    AutoencoderKL,
31
32
33
34
35
36
37
38
39
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
40
41
    OnnxStableDiffusionImg2ImgPipeline,
    OnnxStableDiffusionInpaintPipeline,
42
    OnnxStableDiffusionPipeline,
43
44
45
46
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
47
48
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
49
    StableDiffusionInpaintPipelineLegacy,
50
    StableDiffusionPipeline,
51
    UNet2DConditionModel,
52
    UNet2DModel,
53
    VQModel,
54
55
)
from diffusers.pipeline_utils import DiffusionPipeline
56
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
57
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, load_image, slow, torch_device
Patrick von Platen's avatar
Patrick von Platen committed
58
from diffusers.utils.testing_utils import get_tests_dir
59
from packaging import version
60
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
61
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
62
63
64
65
66


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
67
68
69
70
71
72
73
74
75
76
77
78
79
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
80
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
81
82
83
84
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
85
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
86
87
88
89
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
122
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
127
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
131
132
133

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
134
135
            torch_dtype=torch.float16,
            revision="fp16",
Patrick von Platen's avatar
Patrick von Platen committed
136
        )
137
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
141
142
143
144
145
146
147
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


148
class PipelineFastTests(unittest.TestCase):
149
150
151
152
153
154
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
253
            return images, [False] * len(images)
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
274
        scheduler = DDIMScheduler()
275
276
277

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
278
        ddpm.set_progress_bar_config(disable=None)
279

280
281
282
283
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

284
        generator = torch.manual_seed(0)
285
286
287
288
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
289
290

        image_slice = image[0, -3:, -3:, -1]
291
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
292
293
294
295
296

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
297
298
299
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
300
301
302

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
303
        scheduler = PNDMScheduler()
304
305
306

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
307
        pndm.set_progress_bar_config(disable=None)
308
309
310
311

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

312
        generator = torch.manual_seed(0)
313
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
314
315

        image_slice = image[0, -3:, -3:, -1]
316
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
317
318
319
320

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
321
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
322
323
324

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
325
        scheduler = DDIMScheduler()
326
327
328
329
330
331
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
332
        ldm.set_progress_bar_config(disable=None)
333
334

        prompt = "A painting of a squirrel eating a burger"
335
336
337
338

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
339
340
341
            _ = ldm(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy"
            ).images
342

343
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
344
345
346
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy"
        ).images
347

348
349
350
351
352
353
354
355
356
357
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

358
        image_slice = image[0, -3:, -3:, -1]
359
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
360
361
362
363

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
364
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
365
366

    def test_stable_diffusion_ddim(self):
367
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
391
        sd_pipe = sd_pipe.to(device)
392
        sd_pipe.set_progress_bar_config(disable=None)
393
394

        prompt = "A painting of a squirrel eating a burger"
395

396
397
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
398
        image = output.images
399

400
401
402
403
404
405
406
407
408
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
409
410

        image_slice = image[0, -3:, -3:, -1]
411
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
412
413
414

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
415

416
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
417
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
418

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            height=536,
            width=536,
            num_inference_steps=2,
            output_type="np",
        )
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 134, 134, 3)
        expected_slice = np.array([0.7834, 0.5488, 0.5781, 0.46, 0.3609, 0.5369, 0.542, 0.4855, 0.5557])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

468
    def test_stable_diffusion_pndm(self):
469
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
470
        unet = self.dummy_cond_unet
471
        scheduler = PNDMScheduler(skip_prk_steps=True)
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
486
        sd_pipe = sd_pipe.to(device)
487
        sd_pipe.set_progress_bar_config(disable=None)
488
489

        prompt = "A painting of a squirrel eating a burger"
490
491
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
492

493
494
495
496
497
498
499
500
501
502
503
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
504
505

        image_slice = image[0, -3:, -3:, -1]
506
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
507
508
509
510

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
511
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
512

513
514
515
516
517
518
    def test_from_pretrained_error_message_uninstalled_packages(self):
        # TODO(Patrick, Pedro) - need better test here for the future
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-lms-pipe")
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)

519
520
521
522
523
524
525
526
527
528
529
    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

530
    def test_stable_diffusion_k_lms(self):
531
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
548
        sd_pipe = sd_pipe.to(device)
549
        sd_pipe.set_progress_bar_config(disable=None)
550
551

        prompt = "A painting of a squirrel eating a burger"
552
553
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
554

555
556
557
558
559
560
561
562
563
564
565
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
566
567

        image_slice = image[0, -3:, -3:, -1]
568
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
569
570
571
572

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
573
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    def test_stable_diffusion_attention_chunk(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure chunking the attention yields the same result
        sd_pipe.enable_attention_slicing(slice_size=1)
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 1e-4

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        negative_prompt = "french fries"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
        )

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4851, 0.4617, 0.4765, 0.5127, 0.4845, 0.5153, 0.5141, 0.4886, 0.4719])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

647
648
    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
649
        scheduler = ScoreSdeVeScheduler()
650
651
652

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
653
        sde_ve.set_progress_bar_config(disable=None)
654

655
656
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
657

658
659
660
661
        generator = torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
            0
        ]
662
663

        image_slice = image[0, -3:, -3:, -1]
664
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
665
666
667
668

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
669
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
670
671
672

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
673
        scheduler = DDIMScheduler()
674
675
676
677
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
678
        ldm.set_progress_bar_config(disable=None)
679

680
681
682
683
684
        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            generator = torch.manual_seed(0)
            _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images

685
        generator = torch.manual_seed(0)
686
687
688
689
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
690
691

        image_slice = image[0, -3:, -3:, -1]
692
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
693
694
695
696

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
697
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
698
699
700

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
701
        scheduler = KarrasVeScheduler()
702
703
704

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
705
        pipe.set_progress_bar_config(disable=None)
706
707

        generator = torch.manual_seed(0)
708
709
710
711
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
712
713

        image_slice = image[0, -3:, -3:, -1]
714
715
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

716
717
718
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
719
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
720
721

    def test_stable_diffusion_img2img(self):
722
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
723
        unet = self.dummy_cond_unet
724
        scheduler = PNDMScheduler(skip_prk_steps=True)
725
726
727
728
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

729
        init_image = self.dummy_image.to(device)
730
731
732
733
734
735
736
737
738
739
740

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
741
        sd_pipe = sd_pipe.to(device)
742
        sd_pipe.set_progress_bar_config(disable=None)
743
744

        prompt = "A painting of a squirrel eating a burger"
745
746
747
748
749
750
751
752
753
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
754

755
756
757
758
759
760
761
762
763
764
765
766
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
767
768

        image_slice = image[0, -3:, -3:, -1]
769
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
770
771
772
773

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
774
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
775

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        negative_prompt = "french fries"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device).repeat(2, 1, 1, 1)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = 2 * ["A painting of a squirrel eating a burger"]
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )

        image = output.images

        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
        expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
894
        image = output.images
895

896
897
898
899
900
901
902
903
904
905
906
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
907
908

        image_slice = image[0, -3:, -3:, -1]
909
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
910
911
912
913

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
914
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
915

916
    def test_stable_diffusion_inpaint_legacy(self):
917
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
918
        unet = self.dummy_cond_unet
919
        scheduler = PNDMScheduler(skip_prk_steps=True)
920
921
922
923
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

924
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
925
926
927
928
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
929
        sd_pipe = StableDiffusionInpaintPipelineLegacy(
930
931
932
933
934
935
936
937
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
938
        sd_pipe = sd_pipe.to(device)
939
        sd_pipe.set_progress_bar_config(disable=None)
940
941

        prompt = "A painting of a squirrel eating a burger"
942
943
944
945
946
947
948
949
950
951
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
952

953
954
955
956
957
958
959
960
961
962
963
964
965
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
966
967

        image_slice = image[0, -3:, -3:, -1]
968
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
969
970
971
972

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
973
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
974

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet_inpaint
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((128, 128))
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=None,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            image=init_image,
            mask_image=mask_image,
        )

        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5075, 0.4485, 0.4558, 0.5369, 0.5369, 0.5236, 0.5127, 0.4983, 0.4776])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_inpaint_legacy_negative_prompt(self):
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
1047
        sd_pipe = StableDiffusionInpaintPipelineLegacy(
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        negative_prompt = "french fries"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            prompt,
            negative_prompt=negative_prompt,
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4765, 0.5339, 0.4541, 0.6240, 0.5439, 0.4055, 0.5503, 0.5891, 0.5150])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
    def test_stable_diffusion_num_images_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(prompt, num_inference_steps=2, output_type="np").images

        assert images.shape == (1, 128, 128, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe([prompt] * batch_size, num_inference_steps=2, output_type="np").images

        assert images.shape == (batch_size, 128, 128, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

        assert images.shape == (num_images_per_prompt, 128, 128, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 128, 128, 3)

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
        device = "cpu"
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

1200
    def test_stable_diffusion_inpaint_legacy_num_images_per_prompt(self):
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
        device = "cpu"
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
1213
        sd_pipe = StableDiffusionInpaintPipelineLegacy(
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        ).images

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        ).images

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            num_images_per_prompt=num_images_per_prompt,
        ).images

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

Anton Lozhkov's avatar
Anton Lozhkov committed
1276
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
    def test_stable_diffusion_fp16(self):
        """Test that stable diffusion works with fp16"""
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images

        assert image.shape == (1, 128, 128, 3)

Anton Lozhkov's avatar
Anton Lozhkov committed
1309
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
    def test_stable_diffusion_img2img_fp16(self):
        """Test that stable diffusion img2img works with fp16"""
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(torch_device)

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = sd_pipe(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        ).images

        assert image.shape == (1, 32, 32, 3)

Anton Lozhkov's avatar
Anton Lozhkov committed
1350
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
1351
    def test_stable_diffusion_inpaint_fp16(self):
1352
1353
        """Test that stable diffusion inpaint_legacy works with fp16"""
        unet = self.dummy_cond_unet_inpaint
1354
1355
1356
1357
1358
1359
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
1360
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((128, 128))
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
1375
1376
            safety_checker=None,
            feature_extractor=None,
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
        )
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = sd_pipe(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1388
            image=init_image,
1389
1390
1391
            mask_image=mask_image,
        ).images

1392
        assert image.shape == (1, 128, 128, 3)
1393

1394

1395
class PipelineTesterMixin(unittest.TestCase):
1396
1397
1398
1399
1400
1401
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

1423
1424
1425
1426
1427
1428
1429
    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, [False] * len(images)

        return check

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
1444
        ddpm.to(torch_device)
1445
        ddpm.set_progress_bar_config(disable=None)
1446
1447
1448
1449

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
1450
            new_ddpm.to(torch_device)
1451
1452

        generator = torch.manual_seed(0)
1453
        image = ddpm(generator=generator, output_type="numpy").images
1454

1455
        generator = generator.manual_seed(0)
1456
        new_image = new_ddpm(generator=generator, output_type="numpy").images
1457
1458
1459
1460
1461
1462
1463

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

1464
        scheduler = DDPMScheduler(num_train_timesteps=10)
1465

1466
1467
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
1468
        ddpm.set_progress_bar_config(disable=None)
1469
1470
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
1471
        ddpm_from_hub.set_progress_bar_config(disable=None)
1472
1473

        generator = torch.manual_seed(0)
1474
        image = ddpm(generator=generator, output_type="numpy").images
1475

1476
        generator = generator.manual_seed(0)
1477
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
1478
1479
1480
1481
1482
1483
1484

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1485
1486
        scheduler = DDPMScheduler(num_train_timesteps=10)

1487
1488
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
1489
1490
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
1491
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1492

1493
1494
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
1495
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1496
1497

        generator = torch.manual_seed(0)
1498
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
1499

1500
        generator = generator.manual_seed(0)
1501
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
1502
1503
1504
1505
1506
1507
1508
1509

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
1510
        pipe.to(torch_device)
1511
        pipe.set_progress_bar_config(disable=None)
1512
1513

        generator = torch.manual_seed(0)
1514
        images = pipe(generator=generator, output_type="numpy").images
1515
1516
1517
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1518
        images = pipe(generator=generator, output_type="pil").images
1519
1520
1521
1522
1523
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1524
        images = pipe(generator=generator).images
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
1536
        ddpm.to(torch_device)
1537
        ddpm.set_progress_bar_config(disable=None)
1538
1539

        generator = torch.manual_seed(0)
1540
        image = ddpm(generator=generator, output_type="numpy").images
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
1556
        ddpm.to(torch_device)
1557
        ddpm.set_progress_bar_config(disable=None)
1558
1559

        generator = torch.manual_seed(0)
1560
        image = ddpm(generator=generator, output_type="numpy").images
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1573
        scheduler = DDIMScheduler()
1574
1575

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
1576
        ddim.to(torch_device)
1577
        ddim.set_progress_bar_config(disable=None)
1578
1579

        generator = torch.manual_seed(0)
1580
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1593
        scheduler = PNDMScheduler()
1594
1595

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
1596
        pndm.to(torch_device)
1597
        pndm.set_progress_bar_config(disable=None)
1598
        generator = torch.manual_seed(0)
1599
        image = pndm(generator=generator, output_type="numpy").images
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
1610
        ldm.to(torch_device)
1611
        ldm.set_progress_bar_config(disable=None)
1612
1613
1614

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
Anton Lozhkov's avatar
Anton Lozhkov committed
1615
1616
1617
        image = ldm(
            [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy"
        ).images
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
1628
        ldm.to(torch_device)
1629
        ldm.set_progress_bar_config(disable=None)
1630
1631
1632

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
1633
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
1645
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
1646
        sd_pipe = sd_pipe.to(torch_device)
1647
        sd_pipe.set_progress_bar_config(disable=None)
1648
1649
1650
1651
1652
1653
1654
1655

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

1656
        image = output.images
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
1667
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
1668
        sd_pipe = sd_pipe.to(torch_device)
1669
        sd_pipe.set_progress_bar_config(disable=None)
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
1685
        image = output.images
1686
1687
1688
1689

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
1690
        expected_slice = np.array([0.9326, 0.923, 0.951, 0.9365, 0.9214, 0.951, 0.9365, 0.9414, 0.918])
1691
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1692
1693
1694
1695
1696
1697
1698
1699
1700

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
1701
        sde_ve.to(torch_device)
1702
        sde_ve.set_progress_bar_config(disable=None)
1703

1704
1705
        generator = torch.manual_seed(0)
        image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
1706
1707
1708
1709
1710

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

1711
        expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
1712
1713
1714
1715
1716
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
1717
        ldm.to(torch_device)
1718
        ldm.set_progress_bar_config(disable=None)
1719
1720

        generator = torch.manual_seed(0)
1721
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1734
1735
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1736
1737

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1738
        ddpm.to(torch_device)
1739
        ddpm.set_progress_bar_config(disable=None)
1740
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1741
        ddim.to(torch_device)
1742
        ddim.set_progress_bar_config(disable=None)
1743
1744

        generator = torch.manual_seed(0)
1745
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
1746
1747

        generator = torch.manual_seed(0)
1748
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
1749
1750
1751
1752
1753
1754
1755
1756
1757

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
1758
1759
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1760
1761

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
1762
        ddpm.to(torch_device)
1763
        ddpm.set_progress_bar_config(disable=None)
1764

1765
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
1766
        ddim.to(torch_device)
1767
        ddim.set_progress_bar_config(disable=None)
1768
1769

        generator = torch.manual_seed(0)
1770
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1771
1772

        generator = torch.manual_seed(0)
1773
1774
1775
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
1776
1777
1778
1779
1780
1781
1782
1783

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
1784
        scheduler = KarrasVeScheduler()
1785
1786

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1787
        pipe.to(torch_device)
1788
        pipe.set_progress_bar_config(disable=None)
1789
1790

        generator = torch.manual_seed(0)
1791
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1792
1793
1794

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
1795
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
1796
1797
1798
1799
1800
1801
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
1802
        pipe = StableDiffusionPipeline.from_pretrained(model_id).to(torch_device)
1803
        pipe.set_progress_bar_config(disable=None)
1804
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler")
1805
1806
1807
1808
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
1809
1810
1811
        image = pipe(
            [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
        ).images
1812
1813
1814
1815
1816

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1817
1818
1819

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1820
1821
1822
    def test_stable_diffusion_memory_chunking(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
1823
1824
1825
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16).to(
            torch_device
        )
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

1858
1859
1860
1861
1862
    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_text2img_pipeline_fp16(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
1863
1864
1865
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16).to(
            torch_device
        )
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output_chunked = pipe(
            [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
        )
        image_chunked = output_chunked.images

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # Make sure results are close enough
        diff = np.abs(image_chunked.flatten() - image.flatten())
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

1889
1890
    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1891
1892
1893
1894
    def test_stable_diffusion_text2img_pipeline(self):
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/text2img/astronaut_riding_a_horse.png"
1895
        )
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id,
            safety_checker=self.dummy_safety_checker,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(prompt=prompt, strength=0.75, guidance_scale=7.5, generator=generator, output_type="np")
        image = output.images[0]
1912

1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1929
1930

        model_id = "CompVis/stable-diffusion-v1-4"
1931
1932
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
1933
            safety_checker=self.dummy_safety_checker,
1934
        )
1935
        pipe.to(torch_device)
1936
        pipe.set_progress_bar_config(disable=None)
1937
        pipe.enable_attention_slicing()
1938
1939
1940
1941

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1942
1943
1944
1945
1946
1947
1948
1949
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1950
        image = output.images[0]
1951

1952
        assert image.shape == (512, 768, 3)
1953
1954
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1955
1956
1957

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1958
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1959
1960
1961
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
1962
        )
1963
1964
1965
1966
1967
1968
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/fantasy_landscape_k_lms.png"
        )
        init_image = init_image.resize((768, 512))
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
1969
1970
1971
1972

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
1973
1974
1975
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
1976
            safety_checker=self.dummy_safety_checker,
1977
        )
1978
1979
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1980
        pipe.enable_attention_slicing()
1981
1982
1983
1984

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1985
1986
1987
1988
1989
1990
1991
1992
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
1993
        image = output.images[0]
1994

1995
        assert image.shape == (512, 768, 3)
1996
1997
        # img2img is flaky across GPUs even in fp32, so using MAE here
        assert np.abs(expected_image - image).mean() < 1e-2
1998
1999
2000

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
2001
    def test_stable_diffusion_inpaint_pipeline(self):
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/yellow_cat_sitting_on_a_park_bench.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

Patrick von Platen's avatar
Patrick von Platen committed
2016
        model_id = "runwayml/stable-diffusion-inpainting"
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            safety_checker=self.dummy_safety_checker,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "Face of a yellow cat, high resolution, sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            image=init_image,
            mask_image=mask_image,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_pipeline_fp16(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
Patrick von Platen's avatar
Patrick von Platen committed
2053
            "/in_paint/yellow_cat_sitting_on_a_park_bench_fp16.png"
2054
2055
2056
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

Patrick von Platen's avatar
Patrick von Platen committed
2057
        model_id = "runwayml/stable-diffusion-inpainting"
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            revision="fp16",
            torch_dtype=torch.float16,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "Face of a yellow cat, high resolution, sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            image=init_image,
            mask_image=mask_image,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_legacy_pipeline(self):
2086
2087
2088
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
2089
        )
2090
2091
2092
2093
2094
2095
2096
2097
2098
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0
2099
2100

        model_id = "CompVis/stable-diffusion-v1-4"
2101
2102
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
2103
            safety_checker=self.dummy_safety_checker,
2104
        )
2105
        pipe.to(torch_device)
2106
        pipe.set_progress_bar_config(disable=None)
2107
        pipe.enable_attention_slicing()
2108

2109
        prompt = "A red cat sitting on a park bench"
2110
2111

        generator = torch.Generator(device=torch_device).manual_seed(0)
2112
2113
2114
2115
2116
2117
2118
2119
2120
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
2121
2122
2123
2124
2125
2126
2127
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
    def test_stable_diffusion_inpaint_pipeline_pndm(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/yellow_cat_sitting_on_a_park_bench_pndm.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        pndm = PNDMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True)
Patrick von Platen's avatar
Patrick von Platen committed
2144
        model_id = "runwayml/stable-diffusion-inpainting"
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id, safety_checker=self.dummy_safety_checker, scheduler=pndm
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "Face of a yellow cat, high resolution, sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            image=init_image,
            mask_image=mask_image,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_inpaint_legacy_pipeline_k_lms(self):
        # TODO(Anton, Patrick) - I think we can remove this test soon
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )
        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/red_cat_sitting_on_a_park_bench_k_lms.png"
        )
        expected_image = np.array(expected_image, dtype=np.float32) / 255.0

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            safety_checker=self.dummy_safety_checker,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
2209
        image = output.images[0]
2210

2211
2212
        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 1e-2
2213
2214
2215

    @slow
    def test_stable_diffusion_onnx(self):
2216
        sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
2217
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
2218
        )
2219
2220
2221

        prompt = "A painting of a squirrel eating a burger"
        np.random.seed(0)
2222
        output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=5, output_type="np")
2223
2224
2225
2226
2227
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
2228
        expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327])
2229
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
2230

2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
    @slow
    def test_stable_diffusion_img2img_onnx(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
        pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        np.random.seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            num_inference_steps=8,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 383:386, -1]

        assert images.shape == (1, 512, 768, 3)
2258
2259
2260
        expected_slice = np.array([0.4830, 0.5242, 0.5603, 0.5016, 0.5131, 0.5111, 0.4928, 0.5025, 0.5055])
        # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
        assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296

    @slow
    def test_stable_diffusion_inpaint_onnx(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )

        pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "A red cat sitting on a park bench"

        np.random.seed(0)
        output = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            num_inference_steps=8,
            output_type="np",
        )
        images = output.images
        image_slice = images[0, 255:258, 255:258, -1]

        assert images.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.3524, 0.3289, 0.3464, 0.3872, 0.4129, 0.3566, 0.3709, 0.4128, 0.3734])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [1.8285, 1.2857, -0.1024, 1.2406, -2.3068, 1.0747, -0.0818, -0.6520, -2.9506]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2314
2315
2316
2317
2318
2319
2320
            elif step == 50:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [1.1078, 1.5803, 0.2773, -0.0589, -1.7928, -0.3665, -0.4695, -1.0727, -1.1601]
                )
2321
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
2322
2323
2324
2325

        test_callback_fn.has_been_called = False

        pipe = StableDiffusionPipeline.from_pretrained(
2326
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
2327
        )
2328
        pipe = pipe.to(torch_device)
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "Andromeda galaxy in a bottle"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 51

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2362
2363
2364
2365
2366
            elif step == 37:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.7071, 0.7831, 0.8300, 1.8140, 1.7840, 1.9402, 1.3651, 1.6590, 1.2828])
2367
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
2378
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                init_image=init_image,
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 38

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
2403
    def test_stable_diffusion_inpaint_legacy_intermediate_state(self):
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [-0.5472, 1.1218, -0.5505, -0.9390, -1.0794, 0.4063, 0.5158, 0.6429, -1.5246]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2418
2419
2420
2421
2422
2423
            elif step == 37:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.4781, 1.1572, 0.6258, 0.2291, 0.2554, -0.1443, 0.7085, -0.1598, -0.5659])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
        )

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
2437
            "CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A red cat sitting on a park bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                init_image=init_image,
                mask_image=mask_image,
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
        assert number_of_steps == 38

    @slow
    def test_stable_diffusion_onnx_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
2473
                    [-0.5950, -0.3039, -1.1672, 0.1594, -1.1572, 0.6719, -1.9712, -0.0403, 0.9592]
2474
2475
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2476
2477
2478
2479
2480
2481
2482
            elif step == 5:
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array(
                    [-0.4776, -0.0119, -0.8519, -0.0275, -0.9764, 0.9820, -0.3843, 0.3788, 1.2264]
                )
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
2483
2484
2485

        test_callback_fn.has_been_called = False

2486
        pipe = OnnxStableDiffusionPipeline.from_pretrained(
2487
            "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
2488
2489
2490
2491
2492
2493
        )
        pipe.set_progress_bar_config(disable=None)

        prompt = "Andromeda galaxy in a bottle"

        np.random.seed(0)
2494
        pipe(prompt=prompt, num_inference_steps=5, guidance_scale=7.5, callback=test_callback_fn, callback_steps=1)
2495
        assert test_callback_fn.has_been_called
2496
        assert number_of_steps == 6
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_works(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        model_id = "CompVis/stable-diffusion-v1-4"
        _ = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        ).to(torch_device)

    @slow
    @unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
    def test_stable_diffusion_accelerate_load_reduces_memory_footprint(self):
        if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
            return

        if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
            return

        pipeline_id = "CompVis/stable-diffusion-v1-4"

        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        pipeline_normal_load = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
        )
        pipeline_normal_load.to(torch_device)
        _, peak_normal = tracemalloc.get_traced_memory()
        tracemalloc.stop()

        del pipeline_normal_load
        torch.cuda.empty_cache()
        gc.collect()

        tracemalloc.start()
        _ = StableDiffusionPipeline.from_pretrained(
            pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
        )
        _, peak_accelerate = tracemalloc.get_traced_memory()

        tracemalloc.stop()

        assert peak_accelerate < peak_normal