scheduling_karras_ve.py 9.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from dataclasses import dataclass
17
from typing import Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import BaseOutput, randn_tensor
24
25
26
from .scheduling_utils import SchedulerMixin


27
28
29
30
31
32
33
34
35
36
@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Derivative of predicted original image sample (x_0).
38
39
40
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
41
42
43
44
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor
45
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


48
49
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
Suraj Patil's avatar
Suraj Patil committed
50
51
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.
52

Suraj Patil's avatar
Suraj Patil committed
53
54
55
    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456
56

57
58
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
59
60
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
    Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
    optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.

    Args:
        sigma_min (`float`): minimum noise magnitude
        sigma_max (`float`): maximum noise magnitude
        s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
            A reasonable range is [1.000, 1.011].
        s_churn (`float`): the parameter controlling the overall amount of stochasticity.
            A reasonable range is [0, 100].
        s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
            A reasonable range is [0, 10].
        s_max (`float`): the end value of the sigma range where we add noise.
            A reasonable range is [0.2, 80].

78
79
    """

80
81
    order = 2

82
83
84
    @register_to_config
    def __init__(
        self,
85
86
87
88
89
90
        sigma_min: float = 0.02,
        sigma_max: float = 100,
        s_noise: float = 1.007,
        s_churn: float = 80,
        s_min: float = 0.05,
        s_max: float = 50,
91
    ):
92
93
94
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

95
        # setable values
96
        self.num_inference_steps: int = None
97
        self.timesteps: np.IntTensor = None
98
        self.schedule: torch.FloatTensor = None  # sigma(t_i)
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

114
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
115
116
117
118
119
120
121
122
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.

        """
123
        self.num_inference_steps = num_inference_steps
124
125
        timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
126
        schedule = [
127
            (
128
                self.config.sigma_max**2
129
130
                * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
            )
131
132
            for i in self.timesteps
        ]
133
        self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device)
134

135
    def add_noise_to_input(
136
137
        self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None
    ) -> Tuple[torch.FloatTensor, float]:
138
        """
Suraj Patil's avatar
Suraj Patil committed
139
140
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
141
142

        TODO Args:
143
        """
144
145
        if self.config.s_min <= sigma <= self.config.s_max:
            gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
146
147
148
149
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
150
        eps = self.config.s_noise * randn_tensor(sample.shape, generator=generator).to(sample.device)
151
152
153
154
155
156
157
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
158
        model_output: torch.FloatTensor,
159
160
        sigma_hat: float,
        sigma_prev: float,
161
        sample_hat: torch.FloatTensor,
162
163
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
164
165
166
167
168
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
169
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
170
171
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
172
            sample_hat (`torch.FloatTensor`): TODO
173
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
174
175

            KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check).
176
177
178
179
        Returns:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
180
181

        """
182

183
184
185
186
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

187
188
189
        if not return_dict:
            return (sample_prev, derivative)

190
191
192
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
193
194
195

    def step_correct(
        self,
196
        model_output: torch.FloatTensor,
197
198
        sigma_hat: float,
        sigma_prev: float,
199
200
201
        sample_hat: torch.FloatTensor,
        sample_prev: torch.FloatTensor,
        derivative: torch.FloatTensor,
202
203
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
204
205
206
207
        """
        Correct the predicted sample based on the output model_output of the network. TODO complete description

        Args:
208
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
209
210
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
211
212
213
            sample_hat (`torch.FloatTensor`): TODO
            sample_prev (`torch.FloatTensor`): TODO
            derivative (`torch.FloatTensor`): TODO
214
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
215
216
217

        Returns:
            prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
218

219
        """
220
221
222
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
223
224
225
226

        if not return_dict:
            return (sample_prev, derivative)

227
228
229
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
230
231
232

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()