scheduling_karras_ve.py 9.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from dataclasses import dataclass
17
from typing import Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import BaseOutput
24
25
26
from .scheduling_utils import SchedulerMixin


27
28
29
30
31
32
33
34
35
36
@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Derivative of predicted original image sample (x_0).
38
39
40
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
41
42
43
44
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor
45
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


48
49
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
Suraj Patil's avatar
Suraj Patil committed
50
51
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.
52

Suraj Patil's avatar
Suraj Patil committed
53
54
55
    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456
56

57
58
59
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
60
    [`~ConfigMixin.from_config`] functions.
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
    Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
    optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.

    Args:
        sigma_min (`float`): minimum noise magnitude
        sigma_max (`float`): maximum noise magnitude
        s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
            A reasonable range is [1.000, 1.011].
        s_churn (`float`): the parameter controlling the overall amount of stochasticity.
            A reasonable range is [0, 100].
        s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
            A reasonable range is [0, 10].
        s_max (`float`): the end value of the sigma range where we add noise.
            A reasonable range is [0.2, 80].
        tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays.

79
80
81
82
83
    """

    @register_to_config
    def __init__(
        self,
84
85
86
87
88
89
90
        sigma_min: float = 0.02,
        sigma_max: float = 100,
        s_noise: float = 1.007,
        s_churn: float = 80,
        s_min: float = 0.05,
        s_max: float = 50,
        tensor_format: str = "pt",
91
92
93
94
95
96
97
98
99
    ):
        # setable values
        self.num_inference_steps = None
        self.timesteps = None
        self.schedule = None  # sigma(t_i)

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

100
    def set_timesteps(self, num_inference_steps: int):
101
102
103
104
105
106
107
108
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.

        """
109
110
111
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.schedule = [
112
113
114
115
            (
                self.config.sigma_max
                * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
            )
116
117
118
119
120
121
            for i in self.timesteps
        ]
        self.schedule = np.array(self.schedule, dtype=np.float32)

        self.set_format(tensor_format=self.tensor_format)

122
123
124
    def add_noise_to_input(
        self, sample: Union[torch.FloatTensor, np.ndarray], sigma: float, generator: Optional[torch.Generator] = None
    ) -> Tuple[Union[torch.FloatTensor, np.ndarray], float]:
125
        """
Suraj Patil's avatar
Suraj Patil committed
126
127
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
128
129

        TODO Args:
130
        """
131
132
        if self.config.s_min <= sigma <= self.config.s_max:
            gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
133
134
135
136
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
137
        eps = self.config.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
138
139
140
141
142
143
144
145
146
147
148
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
149
150
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
151
152
153
154
155
156
157
158
159
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
            sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO
160
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
161
162

            KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check).
163
164
165
166
        Returns:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
167
168

        """
169

170
171
172
173
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

174
175
176
        if not return_dict:
            return (sample_prev, derivative)

177
178
179
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
180
181
182
183
184
185
186
187
188

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
        sample_prev: Union[torch.FloatTensor, np.ndarray],
        derivative: Union[torch.FloatTensor, np.ndarray],
189
190
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
191
192
193
194
195
196
197
198
199
200
        """
        Correct the predicted sample based on the output model_output of the network. TODO complete description

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
            sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO
            sample_prev (`torch.FloatTensor` or `np.ndarray`): TODO
            derivative (`torch.FloatTensor` or `np.ndarray`): TODO
201
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
202
203
204

        Returns:
            prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
205

206
        """
207
208
209
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
210
211
212
213

        if not return_dict:
            return (sample_prev, derivative)

214
215
216
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
217
218
219

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()