scheduling_karras_ve.py 5.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin


class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
Suraj Patil's avatar
Suraj Patil committed
27
28
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.
29

Suraj Patil's avatar
Suraj Patil committed
30
31
32
    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    """

    @register_to_config
    def __init__(
        self,
        sigma_min=0.02,
        sigma_max=100,
        s_noise=1.007,
        s_churn=80,
        s_min=0.05,
        s_max=50,
        tensor_format="pt",
    ):
        """
Suraj Patil's avatar
Suraj Patil committed
47
48
49
        For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
        Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
        optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

        Args:
            sigma_min (`float`): minimum noise magnitude
            sigma_max (`float`): maximum noise magnitude
            s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
                A reasonable range is [1.000, 1.011].
            s_churn (`float`): the parameter controlling the overall amount of stochasticity.
                A reasonable range is [0, 100].
            s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
                A reasonable range is [0, 10].
            s_max (`float`): the end value of the sigma range where we add noise.
                A reasonable range is [0.2, 80].
        """
        # setable values
        self.num_inference_steps = None
        self.timesteps = None
        self.schedule = None  # sigma(t_i)

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

    def set_timesteps(self, num_inference_steps):
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.schedule = [
            (self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1)))
            for i in self.timesteps
        ]
        self.schedule = np.array(self.schedule, dtype=np.float32)

        self.set_format(tensor_format=self.tensor_format)

    def add_noise_to_input(self, sample, sigma, generator=None):
        """
Suraj Patil's avatar
Suraj Patil committed
84
85
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        """
        if self.s_min <= sigma <= self.s_max:
            gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1)
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
        eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
    ):
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

        return {"prev_sample": sample_prev, "derivative": derivative}

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
        sample_prev: Union[torch.FloatTensor, np.ndarray],
        derivative: Union[torch.FloatTensor, np.ndarray],
    ):
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
        return {"prev_sample": sample_prev, "derivative": derivative_corr}

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()