scheduling_karras_ve.py 6.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from dataclasses import dataclass
17
from typing import Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import BaseOutput
24
25
26
from .scheduling_utils import SchedulerMixin


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Derivate of predicted original image sample (x_0).
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor


44
45
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
Suraj Patil's avatar
Suraj Patil committed
46
47
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.
48

Suraj Patil's avatar
Suraj Patil committed
49
50
51
    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456
52
53
54
55
56
    """

    @register_to_config
    def __init__(
        self,
57
58
59
60
61
62
63
        sigma_min: float = 0.02,
        sigma_max: float = 100,
        s_noise: float = 1.007,
        s_churn: float = 80,
        s_min: float = 0.05,
        s_max: float = 50,
        tensor_format: str = "pt",
64
65
    ):
        """
Suraj Patil's avatar
Suraj Patil committed
66
67
68
        For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
        Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
        optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

        Args:
            sigma_min (`float`): minimum noise magnitude
            sigma_max (`float`): maximum noise magnitude
            s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
                A reasonable range is [1.000, 1.011].
            s_churn (`float`): the parameter controlling the overall amount of stochasticity.
                A reasonable range is [0, 100].
            s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
                A reasonable range is [0, 10].
            s_max (`float`): the end value of the sigma range where we add noise.
                A reasonable range is [0.2, 80].
        """
        # setable values
        self.num_inference_steps = None
        self.timesteps = None
        self.schedule = None  # sigma(t_i)

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

90
    def set_timesteps(self, num_inference_steps: int):
91
92
93
94
95
96
97
98
99
100
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.schedule = [
            (self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1)))
            for i in self.timesteps
        ]
        self.schedule = np.array(self.schedule, dtype=np.float32)

        self.set_format(tensor_format=self.tensor_format)

101
102
103
    def add_noise_to_input(
        self, sample: Union[torch.FloatTensor, np.ndarray], sigma: float, generator: Optional[torch.Generator] = None
    ) -> Tuple[Union[torch.FloatTensor, np.ndarray], float]:
104
        """
Suraj Patil's avatar
Suraj Patil committed
105
106
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        """
        if self.s_min <= sigma <= self.s_max:
            gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1)
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
        eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
126
127
128
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:

129
130
131
132
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

133
134
135
136
        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative)
137
138
139
140
141
142
143
144
145

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
        sample_prev: Union[torch.FloatTensor, np.ndarray],
        derivative: Union[torch.FloatTensor, np.ndarray],
146
147
148
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:

149
150
151
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
152
153
154
155
156

        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative)
157
158
159

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()