scheduling_karras_ve.py 6.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
17
from dataclasses import dataclass
from typing import Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import BaseOutput
24
25
26
from .scheduling_utils import SchedulerMixin


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Derivate of predicted original image sample (x_0).
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor


44
45
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
Suraj Patil's avatar
Suraj Patil committed
46
47
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.
48

Suraj Patil's avatar
Suraj Patil committed
49
50
51
    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    """

    @register_to_config
    def __init__(
        self,
        sigma_min=0.02,
        sigma_max=100,
        s_noise=1.007,
        s_churn=80,
        s_min=0.05,
        s_max=50,
        tensor_format="pt",
    ):
        """
Suraj Patil's avatar
Suraj Patil committed
66
67
68
        For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
        Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
        optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        Args:
            sigma_min (`float`): minimum noise magnitude
            sigma_max (`float`): maximum noise magnitude
            s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
                A reasonable range is [1.000, 1.011].
            s_churn (`float`): the parameter controlling the overall amount of stochasticity.
                A reasonable range is [0, 100].
            s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
                A reasonable range is [0, 10].
            s_max (`float`): the end value of the sigma range where we add noise.
                A reasonable range is [0.2, 80].
        """
        # setable values
        self.num_inference_steps = None
        self.timesteps = None
        self.schedule = None  # sigma(t_i)

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

    def set_timesteps(self, num_inference_steps):
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.schedule = [
            (self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1)))
            for i in self.timesteps
        ]
        self.schedule = np.array(self.schedule, dtype=np.float32)

        self.set_format(tensor_format=self.tensor_format)

    def add_noise_to_input(self, sample, sigma, generator=None):
        """
Suraj Patil's avatar
Suraj Patil committed
103
104
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        """
        if self.s_min <= sigma <= self.s_max:
            gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1)
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
        eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
124
125
126
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:

127
128
129
130
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

131
132
133
134
        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative)
135
136
137
138
139
140
141
142
143

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
        sample_prev: Union[torch.FloatTensor, np.ndarray],
        derivative: Union[torch.FloatTensor, np.ndarray],
144
145
146
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:

147
148
149
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
150
151
152
153
154

        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(prev_sample=sample_prev, derivative=derivative)
155
156
157

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()