scheduling_karras_ve.py 9.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from dataclasses import dataclass
17
from typing import Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import BaseOutput, deprecate
24
25
26
from .scheduling_utils import SchedulerMixin


27
28
29
30
31
32
33
34
35
36
@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Derivative of predicted original image sample (x_0).
38
39
40
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
41
42
43
44
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor
45
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


48
49
class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
Suraj Patil's avatar
Suraj Patil committed
50
51
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
    the VE column of Table 1 from [1] for reference.
52

Suraj Patil's avatar
Suraj Patil committed
53
54
55
    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
    https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
    differential equations." https://arxiv.org/abs/2011.13456
56

57
58
59
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
60
    [`~ConfigMixin.from_config`] functions.
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
    Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
    optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.

    Args:
        sigma_min (`float`): minimum noise magnitude
        sigma_max (`float`): maximum noise magnitude
        s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
            A reasonable range is [1.000, 1.011].
        s_churn (`float`): the parameter controlling the overall amount of stochasticity.
            A reasonable range is [0, 100].
        s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
            A reasonable range is [0, 10].
        s_max (`float`): the end value of the sigma range where we add noise.
            A reasonable range is [0.2, 80].

78
79
80
81
82
    """

    @register_to_config
    def __init__(
        self,
83
84
85
86
87
88
        sigma_min: float = 0.02,
        sigma_max: float = 100,
        s_noise: float = 1.007,
        s_churn: float = 80,
        s_min: float = 0.05,
        s_max: float = 50,
89
        **kwargs,
90
    ):
91
92
93
94
95
96
        deprecate(
            "tensor_format",
            "0.5.0",
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
97

98
        # setable values
99
100
101
        self.num_inference_steps: int = None
        self.timesteps: np.ndarray = None
        self.schedule: torch.FloatTensor = None  # sigma(t_i)
102

103
    def set_timesteps(self, num_inference_steps: int):
104
105
106
107
108
109
110
111
        """
        Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.

        """
112
113
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
114
        schedule = [
115
            (
116
                self.config.sigma_max**2
117
118
                * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
            )
119
120
            for i in self.timesteps
        ]
121
        self.schedule = torch.tensor(schedule, dtype=torch.float32)
122

123
    def add_noise_to_input(
124
125
        self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None
    ) -> Tuple[torch.FloatTensor, float]:
126
        """
Suraj Patil's avatar
Suraj Patil committed
127
128
        Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
        higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
129
130

        TODO Args:
131
        """
132
133
        if self.config.s_min <= sigma <= self.config.s_max:
            gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
134
135
136
137
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
138
        eps = self.config.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
139
140
141
142
143
144
145
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
146
        model_output: torch.FloatTensor,
147
148
        sigma_hat: float,
        sigma_prev: float,
149
        sample_hat: torch.FloatTensor,
150
151
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
152
153
154
155
156
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
157
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
158
159
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
160
            sample_hat (`torch.FloatTensor`): TODO
161
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
162
163

            KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check).
164
165
166
167
        Returns:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`:
            [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
168
169

        """
170

171
172
173
174
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

175
176
177
        if not return_dict:
            return (sample_prev, derivative)

178
179
180
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
181
182
183

    def step_correct(
        self,
184
        model_output: torch.FloatTensor,
185
186
        sigma_hat: float,
        sigma_prev: float,
187
188
189
        sample_hat: torch.FloatTensor,
        sample_prev: torch.FloatTensor,
        derivative: torch.FloatTensor,
190
191
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
192
193
194
195
        """
        Correct the predicted sample based on the output model_output of the network. TODO complete description

        Args:
196
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
197
198
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
199
200
201
            sample_hat (`torch.FloatTensor`): TODO
            sample_prev (`torch.FloatTensor`): TODO
            derivative (`torch.FloatTensor`): TODO
202
            return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class
203
204
205

        Returns:
            prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
206

207
        """
208
209
210
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
211
212
213
214

        if not return_dict:
            return (sample_prev, derivative)

215
216
217
        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )
218
219
220

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()