scheduling_ddpm.py 15.6 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
25
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
102
103
104
        prediction_type (`str`, default `epsilon`):
            indicates whether the model predicts the noise (epsilon), or the samples. One of `epsilon`, `sample`.
            `v-prediction` is not supported for this scheduler.
105
106
    """

107
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
108
    _deprecated_kwargs = ["predict_epsilon"]
109

110
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
111
112
    def __init__(
        self,
Partho's avatar
Partho committed
113
114
115
116
117
118
119
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
120
121
        prediction_type: str = "epsilon",
        **kwargs,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
122
    ):
123
124
125
126
127
128
129
130
        message = (
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDPMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)
        if predict_epsilon is not None:
            self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")

131
        if trained_betas is not None:
132
            self.betas = torch.from_numpy(trained_betas)
133
        elif beta_schedule == "linear":
134
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
135
136
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
137
138
139
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
140
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
141
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
142
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
143
144
145
146
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
147
148
149
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
150
        self.alphas = 1.0 - self.betas
151
152
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
153

154
155
156
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

157
158
        # setable values
        self.num_inference_steps = None
159
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
160

161
162
        self.variance_type = variance_type

163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

177
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
178
179
180
181
182
183
184
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
185
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
186
        self.num_inference_steps = num_inference_steps
187
        timesteps = np.arange(
188
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
189
190
        )[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
191

192
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
193
194
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
195

Kashif Rasul's avatar
Kashif Rasul committed
196
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
197
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
198
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
199
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
200

201
202
203
        if variance_type is None:
            variance_type = self.config.variance_type

204
        # hacks - were probably added for training stability
205
        if variance_type == "fixed_small":
206
            variance = torch.clamp(variance, min=1e-20)
207
        # for rl-diffuser https://arxiv.org/abs/2205.09991
208
        elif variance_type == "fixed_small_log":
209
            variance = torch.log(torch.clamp(variance, min=1e-20))
210
            variance = torch.exp(0.5 * variance)
211
        elif variance_type == "fixed_large":
212
            variance = self.betas[t]
213
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
214
            # Glide max_log
215
            variance = torch.log(self.betas[t])
216
217
218
219
220
221
222
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225

        return variance

226
227
    def step(
        self,
228
        model_output: torch.FloatTensor,
229
        timestep: int,
230
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
231
        generator=None,
232
        return_dict: bool = True,
233
        **kwargs,
234
    ) -> Union[DDPMSchedulerOutput, Tuple]:
235
236
237
238
239
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
240
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
241
            timestep (`int`): current discrete timestep in the diffusion chain.
242
            sample (`torch.FloatTensor`):
243
244
                current instance of sample being created by diffusion process.
            generator: random number generator.
245
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
246
247

        Returns:
248
249
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
250
            returning a tuple, the first element is the sample tensor.
251
252

        """
253
        message = (
254
255
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDPMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
256
257
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)
258
        if predict_epsilon is not None:
259
            new_config = dict(self.config)
260
            new_config["prediction_type"] = "epsilon" if predict_epsilon else "sample"
261
262
            self._internal_dict = FrozenDict(new_config)

263
        t = timestep
264

265
266
267
268
269
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
270
        # 1. compute alphas, betas
271
272
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
273
274
275
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

276
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
277
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
278
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
279
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
280
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
281
            pred_original_sample = model_output
282
283
284
285
286
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` "
                " for the DDPMScheduler."
            )
Patrick von Platen's avatar
Patrick von Platen committed
287
288

        # 3. Clip "predicted x_0"
289
        if self.config.clip_sample:
290
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
291

292
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
293
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
294
295
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
296

297
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
298
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
299
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
300

Patrick von Platen's avatar
Patrick von Platen committed
301
302
303
        # 6. Add noise
        variance = 0
        if t > 0:
304
305
306
307
308
309
310
311
312
            device = model_output.device
            if device.type == "mps":
                # randn does not work reproducibly on mps
                variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                variance_noise = variance_noise.to(device)
            else:
                variance_noise = torch.randn(
                    model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                )
313
314
315
316
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
317
318
319

        pred_prev_sample = pred_prev_sample + variance

320
321
322
        if not return_dict:
            return (pred_prev_sample,)

323
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
324

Partho's avatar
Partho committed
325
326
    def add_noise(
        self,
327
328
329
330
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
331
332
333
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
334

anton-l's avatar
anton-l committed
335
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
336
337
338
339
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
340
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
341
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
342
343
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
344
345

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
346
        return noisy_samples
anton-l's avatar
anton-l committed
347

Patrick von Platen's avatar
improve  
Patrick von Platen committed
348
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
349
        return self.config.num_train_timesteps