test_pipelines.py 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import os
18
import random
19
20
21
22
23
24
25
26
import tempfile
import unittest

import numpy as np
import torch

import PIL
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    PNDMScheduler,
33
    StableDiffusionImg2ImgPipeline,
34
    StableDiffusionInpaintPipelineLegacy,
35
    StableDiffusionPipeline,
36
    UNet2DConditionModel,
37
    UNet2DModel,
38
    VQModel,
39
    logging,
40
41
)
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
43
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, slow, torch_device
44
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir
45
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
46
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
47
48
49
50
51


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
52
53
54
55
56
57
58
59
60
61
62
63
64
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
65
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
66
67
68
69
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
70
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
71
72
73
74
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
80
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
85
86
87
88
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
89
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
93
94
95
96
97
98
99
100
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

    def test_local_custom_pipeline(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
101
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
102
103
104
105
106
107
108
109
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

    @slow
110
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
Patrick von Platen's avatar
Patrick von Platen committed
111
112
113
    def test_load_pipeline_from_git(self):
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

114
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id, device_map="auto")
115
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
119
120
121

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
122
123
            torch_dtype=torch.float16,
            revision="fp16",
124
            device_map="auto",
Patrick von Platen's avatar
Patrick von Platen committed
125
        )
126
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
132
133
134
135
136
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
class PipelineFastTests(unittest.TestCase):
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    @property
    def dummy_cond_unet_inpaint(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

248
249
    def test_components(self):
        """Test that components property works correctly"""
250
        unet = self.dummy_cond_unet
251
        scheduler = PNDMScheduler(skip_prk_steps=True)
252
253
254
255
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

256
257
258
        image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
259
260

        # make sure here that pndm scheduler skips prk
261
        inpaint = StableDiffusionInpaintPipelineLegacy(
262
263
264
265
266
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
267
            safety_checker=None,
268
            feature_extractor=self.dummy_extractor,
269
270
271
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
272
273

        prompt = "A painting of a squirrel eating a burger"
274
275
276
277
278
279
280

        # Device type MPS is not supported for torch.Generator() api.
        if torch_device == "mps":
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

281
        image_inpaint = inpaint(
282
283
284
285
286
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
287
288
289
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
290
291
292
293
294
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
295
296
297
        ).images
        image_text2img = text2img(
            [prompt],
298
299
300
            generator=generator,
            num_inference_steps=2,
            output_type="np",
301
        ).images
302

303
304
305
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
        assert image_text2img.shape == (1, 128, 128, 3)
306

307

308
309
@slow
class PipelineSlowTests(unittest.TestCase):
310
311
312
313
314
315
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

316
317
318
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
319
320
321
            _ = DiffusionPipeline.from_pretrained(
                model_id, cache_dir=tmpdirname, force_download=True, device_map="auto"
            )
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

339
340
341
342
343
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        logger = logging.get_logger("diffusers.pipeline_utils")
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
344
345
346
                DiffusionPipeline.from_pretrained(
                    model_id, not_used=True, cache_dir=tmpdirname, force_download=True, device_map="auto"
                )
347
348
349

        assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"

350
351
352
353
354
355
356
357
358
359
360
361
362
363
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
364
        ddpm.to(torch_device)
365
        ddpm.set_progress_bar_config(disable=None)
366
367
368

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
369
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname, device_map="auto")
370
            new_ddpm.to(torch_device)
371
372

        generator = torch.manual_seed(0)
373
        image = ddpm(generator=generator, output_type="numpy").images
374

375
        generator = generator.manual_seed(0)
376
        new_image = new_ddpm(generator=generator, output_type="numpy").images
377
378
379
380
381
382

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

383
        scheduler = DDPMScheduler(num_train_timesteps=10)
384

385
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
386
        ddpm = ddpm.to(torch_device)
387
        ddpm.set_progress_bar_config(disable=None)
388

389
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
390
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
391
        ddpm_from_hub.set_progress_bar_config(disable=None)
392
393

        generator = torch.manual_seed(0)
394
        image = ddpm(generator=generator, output_type="numpy").images
395

396
        generator = generator.manual_seed(0)
397
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
398
399
400
401
402
403

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

404
405
        scheduler = DDPMScheduler(num_train_timesteps=10)

406
        # pass unet into DiffusionPipeline
407
408
409
410
        unet = UNet2DModel.from_pretrained(model_path, device_map="auto")
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(
            model_path, unet=unet, scheduler=scheduler, device_map="auto"
        )
411
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
412
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
413

414
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, device_map="auto")
415
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
416
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
417
418

        generator = torch.manual_seed(0)
419
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
420

421
        generator = generator.manual_seed(0)
422
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
423
424
425
426
427
428

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

429
        pipe = DDIMPipeline.from_pretrained(model_path, device_map="auto")
430
        pipe.to(torch_device)
431
        pipe.set_progress_bar_config(disable=None)
432
433

        generator = torch.manual_seed(0)
434
        images = pipe(generator=generator, output_type="numpy").images
435
436
437
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

438
        images = pipe(generator=generator, output_type="pil").images
439
440
441
442
443
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
444
        images = pipe(generator=generator).images
445
446
447
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

448
449
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"
450

451
        unet = UNet2DModel.from_pretrained(model_id, device_map="auto")
452
453
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
454

455
456
457
458
459
460
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
461

462
463
        generator = torch.manual_seed(0)
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
464

465
466
        generator = torch.manual_seed(0)
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
467

468
469
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1
470

471
472
473
    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"
474

475
        unet = UNet2DModel.from_pretrained(model_id, device_map="auto")
476
477
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
478

479
480
481
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
482

483
484
485
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
486

487
488
489
490
491
492
493
        generator = torch.manual_seed(0)
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        ddim_images = ddim(
            batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
        ).images
494

495
496
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1