pipeline_utils.py 8.59 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
24
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
Patrick von Platen committed
25
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
37
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
38
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
39
        "ClassifierFreeGuidanceScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
40
41
    },
    "transformers": {
anton-l's avatar
anton-l committed
42
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
43
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
44
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
    },
}

48
49
50
51
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
52

Patrick von Platen's avatar
Patrick von Platen committed
53
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
57
    def register_modules(self, **kwargs):
58
59
        # import it here to avoid circular import
        from diffusers import pipelines
60

Patrick von Platen's avatar
Patrick von Platen committed
61
        for name, module in kwargs.items():
62
63
            # check if the module is a pipeline module
            is_pipeline_module = hasattr(pipelines, module.__module__.split(".")[-1])
64

Patrick von Platen's avatar
Patrick von Platen committed
65
66
            # retrive library
            library = module.__module__.split(".")[0]
67

68
69
70
71
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
            # so we set the library to module name.
            if library not in LOADABLE_CLASSES or is_pipeline_module:
patil-suraj's avatar
patil-suraj committed
72
73
                library = module.__module__.split(".")[-1]

Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
            # retrive class_name
            class_name = module.__class__.__name__

77
78
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
79
            # save model index config
80
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83

            # set models
            setattr(self, name, module)
84

Patrick von Platen's avatar
Patrick von Platen committed
85
        register_dict = {"_module": self.__module__.split(".")[-1]}
86
        self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
87
88
89
90

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

91
        model_index_dict = self.config
Patrick von Platen's avatar
Patrick von Platen committed
92
        model_index_dict.pop("_class_name")
93
        model_index_dict.pop("_diffusers_version")
94
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
95

anton-l's avatar
anton-l committed
96
97
98
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
99
100

            save_method_name = None
anton-l's avatar
anton-l committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
115
116
117

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
118
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
119
        Add docstrings
120
121
122
123
124
125
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
Patrick von Platen's avatar
Patrick von Platen committed
126

patil-suraj's avatar
patil-suraj committed
127
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
128
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
129
        if not os.path.isdir(pretrained_model_name_or_path):
130
131
132
133
134
135
136
137
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
138
139
        else:
            cached_folder = pretrained_model_name_or_path
140

patil-suraj's avatar
patil-suraj committed
141
        config_dict = cls.get_config_dict(cached_folder)
142

patil-suraj's avatar
patil-suraj committed
143
        # 2. Get class name and module candidates to load custom models
Patrick von Platen's avatar
Patrick von Platen committed
144
145
        module_candidate_name = config_dict["_module"]
        module_candidate = module_candidate_name + ".py"
Patrick von Platen's avatar
fix  
Patrick von Platen committed
146

patil-suraj's avatar
patil-suraj committed
147
        # 3. Load the pipeline class, if using custom module then load it from the hub
148
149
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
150
151
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

            # (TODO - we should allow to load custom pipelines
156
            # else we need to load the correct module from the Hub
Patrick von Platen's avatar
Patrick von Platen committed
157
158
            # module = module_candidate
            # pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
159

160
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
161
162

        init_kwargs = {}
163

164
165
        # import it here to avoid circular import
        from diffusers import pipelines
166

patil-suraj's avatar
patil-suraj committed
167
        # 4. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
168
        for name, (library_name, class_name) in init_dict.items():
169
170
171
172
173
174
175
176
177
178
            is_pipeline_module = hasattr(pipelines, library_name)
            # if the model is in a pipeline module, then we load it from the pipeline
            if is_pipeline_module:
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
            elif library_name == module_candidate_name:
                # if the model is not in diffusers or transformers, we need to load it from the hub
                # assumes that it's a subclass of ModelMixin
patil-suraj's avatar
patil-suraj committed
179
                class_obj = get_class_from_dynamic_module(cached_folder, module_candidate, class_name, cached_folder)
180
                # since it's not from a library, we need to check class candidates for all importable classes
181
182
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
patil-suraj's avatar
patil-suraj committed
183
            else:
patil-suraj's avatar
patil-suraj committed
184
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
185
186
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
187
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
188
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
189

190
191
192
193
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
194
195
196

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
197
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
198
            if os.path.isdir(os.path.join(cached_folder, name)):
199
200
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
201
                # else load from the root directory
202
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
203

204
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
205

patil-suraj's avatar
patil-suraj committed
206
        # 5. Instantiate the pipeline
207
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
208
        return model