scheduling_ddpm.py 14.6 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
25
from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
from ..utils import BaseOutput, deprecate
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
83
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
84
    [`~ConfigMixin.from_config`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
102
103
        predict_epsilon (`bool`):
            optional flag to use when the model predicts the noise (epsilon), or the samples instead of the noise.
104
105
106

    """

107
108
109
110
111
112
    _compatible_classes = [
        "DDIMScheduler",
        "PNDMScheduler",
        "LMSDiscreteScheduler",
        "EulerDiscreteScheduler",
        "EulerAncestralDiscreteScheduler",
113
        "DPMSolverMultistepScheduler",
114
115
    ]

116
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
117
118
    def __init__(
        self,
Partho's avatar
Partho committed
119
120
121
122
123
124
125
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
126
        predict_epsilon: bool = True,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
127
    ):
128
        if trained_betas is not None:
129
            self.betas = torch.from_numpy(trained_betas)
130
        elif beta_schedule == "linear":
131
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
132
133
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
134
135
136
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
137
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
138
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
139
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
140
141
142
143
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
144
145
146
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
147
        self.alphas = 1.0 - self.betas
148
149
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
150

151
152
153
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

154
155
        # setable values
        self.num_inference_steps = None
156
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
157

158
159
        self.variance_type = variance_type

160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

174
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
175
176
177
178
179
180
181
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
182
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
183
        self.num_inference_steps = num_inference_steps
184
        timesteps = np.arange(
185
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
186
187
        )[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
188

189
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
190
191
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
192

Kashif Rasul's avatar
Kashif Rasul committed
193
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
194
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
195
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
196
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
197

198
199
200
        if variance_type is None:
            variance_type = self.config.variance_type

201
        # hacks - were probably added for training stability
202
        if variance_type == "fixed_small":
203
            variance = torch.clamp(variance, min=1e-20)
204
        # for rl-diffuser https://arxiv.org/abs/2205.09991
205
        elif variance_type == "fixed_small_log":
206
            variance = torch.log(torch.clamp(variance, min=1e-20))
207
        elif variance_type == "fixed_large":
208
            variance = self.betas[t]
209
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
210
            # Glide max_log
211
            variance = torch.log(self.betas[t])
212
213
214
215
216
217
218
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
219
220
221

        return variance

222
223
    def step(
        self,
224
        model_output: torch.FloatTensor,
225
        timestep: int,
226
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
227
        generator=None,
228
        return_dict: bool = True,
229
        **kwargs,
230
    ) -> Union[DDPMSchedulerOutput, Tuple]:
231
232
233
234
235
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
236
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
237
            timestep (`int`): current discrete timestep in the diffusion chain.
238
            sample (`torch.FloatTensor`):
239
240
                current instance of sample being created by diffusion process.
            generator: random number generator.
241
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
242
243

        Returns:
244
245
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
246
            returning a tuple, the first element is the sample tensor.
247
248

        """
249
250
251
252
253
254
255
256
257
258
        message = (
            "Please make sure to instantiate your scheduler with `predict_epsilon` instead. E.g. `scheduler ="
            " DDPMScheduler.from_config(<model_id>, predict_epsilon=True)`."
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)
        if predict_epsilon is not None and predict_epsilon != self.config.predict_epsilon:
            new_config = dict(self.config)
            new_config["predict_epsilon"] = predict_epsilon
            self._internal_dict = FrozenDict(new_config)

259
        t = timestep
260

261
262
263
264
265
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
266
        # 1. compute alphas, betas
267
268
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
269
270
271
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

272
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
273
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
274
        if self.config.predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
275
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
276
        else:
Patrick von Platen's avatar
Patrick von Platen committed
277
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
278
279

        # 3. Clip "predicted x_0"
280
        if self.config.clip_sample:
281
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
282

283
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
284
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
285
286
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
287

288
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
289
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
290
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
291

Patrick von Platen's avatar
Patrick von Platen committed
292
293
294
        # 6. Add noise
        variance = 0
        if t > 0:
295
296
297
298
299
300
301
302
303
304
            device = model_output.device
            if device.type == "mps":
                # randn does not work reproducibly on mps
                variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                variance_noise = variance_noise.to(device)
            else:
                variance_noise = torch.randn(
                    model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                )
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
305
306
307

        pred_prev_sample = pred_prev_sample + variance

308
309
310
        if not return_dict:
            return (pred_prev_sample,)

311
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
312

Partho's avatar
Partho committed
313
314
    def add_noise(
        self,
315
316
317
318
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
319
320
321
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
322

anton-l's avatar
anton-l committed
323
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
324
325
326
327
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
328
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
329
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
330
331
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
332
333

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
334
        return noisy_samples
anton-l's avatar
anton-l committed
335

Patrick von Platen's avatar
improve  
Patrick von Platen committed
336
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
337
        return self.config.num_train_timesteps